Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Membranes (Basel) ; 14(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38786940

RESUMO

China is the world's largest producer and exporter of concentrated apple juice (CAJ). However, traditional concentration methods such as vacuum evaporation (VE) and freeze concentration cause the loss of essential nutrients and heat-sensitive components with high energy consumption. A green and effective technique is thus desired for juice concentration to improve product quality and sustainability. In this study, a hybrid forward osmosis-membrane distillation (FO-MD) process was explored for the concentration of apple juice using sodium lactate (L-NaLa) as a renewable draw solute. As a result, commercial apple juice could be concentrated up to 65 °Brix by the FO process with an average flux of 2.5 L·m-2·h-1. Most of the nutritional and volatile compounds were well retained in this process, while a significant deterioration in product quality was observed in products obtained by VE concentration. It was also found that membrane fouling in the FO concentration process was reversible, and a periodical UP water flush could remove most of the contaminants on the membrane surface to achieve a flux restoration of more than 95%. In addition, the L-NaLa draw solution could be regenerated by a vacuum membrane distillation (VMD) process with an average flux of around 7.87 L∙m-2∙h-1 for multiple reuse, which further enhanced the long-term sustainability of the hybrid process.

2.
J Infect Dis ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805184

RESUMO

Staphylococcus aureus (S. aureus) persists within mammary epithelial cells for an extended duration, exploiting the host metabolic resources to facilitate replication. This study revealed a mechanism by which intracellular S. aureus reprograms host metabolism, with PFKFB3 playing a crucial role in this process. Mechanistically, S. aureus induced mitochondrial damage, leading to increased levels of mitochondrial reactive oxygen species (mROS) and dysfunction in electron transport chain (ETC). Moreover, S. aureus shifted the balance of mitochondrial dynamics from fusion to fission, subsequently activating PINK1-PRKN-dependent mitophagy, causing loss of the sirtuin 3 (SIRT3) to stabilize hypoxic inducible factor 1α (HIF1α), and shifting the host metabolism toward enhanced glycolysis. The inhibition of PFKFB3 reversed the mitochondrial damage and degradation of SIRT3 induced by S. aureus. Overall, our findings elucidate the mechanism by which S. aureus reprograms host metabolism and offer insights into the treatment of S. aureus infection.

3.
Free Radic Biol Med ; 210: 13-24, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951283

RESUMO

Cystathionine-ß-synthase (CBS) catalyzes the first step of the transsulfuration pathway. The role of host-derived CBS in Staphylococcus aureus (S. aureus)-induced udder infection remains elusive. Herein, we report that S. aureus infection enhances the expression of CBS in mammary epithelial cells in vitro and in vivo. A negative correlation is present between the expression of CBS and inflammation after employing a pharmacological inhibitor/agonist of CBS. In addition, CBS achieves a fine balance between eliciting sufficient protective innate immunity and preventing excessive damage to cells and tissues preserving the integrity of the blood-milk barrier (BMB). CBS/H2S reduces bacterial load by promoting the generation of antibacterial substances (ROS, RNS) and inhibiting apoptosis, as opposed to relying solely on intense inflammatory reactions. Conversely, H2S donor alleviate inflammation via S-sulfhydrating HuR. Finally, CBS/H2S promotes the expression of Abcb1b, which in turn strengthens the integrity of the BMB. The study described herein demonstrates the importance of CBS in regulating the mammary immune response to S. aureus. Increased CBS in udder tissue modulates excessive inflammation, which suggests a novel target for drug development in the battle against S. aureus and other infections.


Assuntos
Cistationina beta-Sintase , Sulfeto de Hidrogênio , Animais , Humanos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Staphylococcus aureus/metabolismo , Cistationina , Glândulas Mamárias Animais/metabolismo , Inflamação , Sulfeto de Hidrogênio/metabolismo
4.
J Infect Dis ; 229(2): 535-546, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37592764

RESUMO

Mastitis caused by antibiotic-resistant strains of Staphylococcus aureus is a significant concern in the livestock industry due to the economic losses it incurs. Regulating immunometabolism has emerged as a promising approach for preventing bacterial inflammation. To investigate the possibility of alleviating inflammation caused by S aureus infection by regulating host glycolysis, we subjected the murine mammary epithelial cell line (EpH4-Ev) to S aureus challenge. Our study revealed that S aureus can colonize EpH4-Ev cells and promote inflammation through hypoxic inducible factor 1α (HIF1α)-driven glycolysis. Notably, the activation of HIF1α was found to be dependent on the production of reactive oxygen species (ROS). By inhibiting PFKFB3, a key regulator in the host glycolytic pathway, we successfully modulated HIF1α-triggered metabolic reprogramming by reducing ROS production in S aureus-induced mastitis. Our findings suggest that there is a high potential for the development of novel anti-inflammatory therapies that safely inhibit the glycolytic rate-limiting enzyme PFKFB3.


Assuntos
Mastite , Staphylococcus aureus , Feminino , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/metabolismo , Células Epiteliais/microbiologia , Inflamação , Glicólise , Proliferação de Células , Fosfofrutoquinase-2/metabolismo
5.
Int Immunopharmacol ; 114: 109536, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36700763

RESUMO

Mastitis affects animal welfare and causes economic losses in the dairy industry. It is caused mainly by bacterial pathogens, among which Escherichia coli (E. coli) is one of the prominent causative agents. To treat bovine mastitis, antibiotics were widely used. However, their extensive and uncontrolled use has led to the emergence of multi-antibiotic-resistant strains. Indeed, a superbug of E. coli was successfully isolated from a mastitis-suffering cow and found resistant to at least 10 antibiotics. Therefore, the development of a universal therapeutic agent used as a replacement for the antibiotic is an immediate need in the dairy industry. To do so, we examined whether chlorogenic acid (CGA), a natural and herbal extract, could be a perfect alternative in mastitis treatment. In this study, we observed that the combination of CGA and antibiotic had an additive or synergistic effect; CGA fought against the superbug by directly targeting bacterial cell wall and membrane; CGA can significantly alleviate the mastitis caused by the superbug E. coli via its antimicrobial, antioxidant and anti-inflammatory activities. Collectively, these data indicated that CGA had a true potential to replace antibiotics during mastitis treatment.


Assuntos
Infecções por Escherichia coli , Mastite Bovina , Animais , Bovinos , Feminino , Humanos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Mastite Bovina/tratamento farmacológico
6.
Int Immunopharmacol ; 113(Pt A): 109413, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461586

RESUMO

Excessive production of reactive oxygen species (ROS) leads to oxidative stress in host cells and affects the progress of disease. Mitochondria are an important source of ROS and their dysfunction is closely related to ROS production. S. uberis is a common causative agent of mastitis. The expression of key enzymes of the mitochondrial apoptotic pathway is increased in mammary epithelial cells after S. uberis stimulation, while expression of proteins related to mitochondrial function is decreased. Drp1, a key protein associated with mitochondrial function, is activated upon infection. Accompanied by mitochondria-cytosol translocation of Drp1, Fis1 expression is significantly upregulated while Mfn1 expression is downregulated implying that the balance of mitochondrial dynamics is disrupted. This leads to mitochondrial fragmentation, decreased mitochondrial membrane potential, higher levels of mROS and oxidative injury. The AMPK activator AICAR inhibits the increased phosphorylation of Drp1 and the translocation of Drp1 to mitochondria by salvaging mitochondrial function in an AMPK/Drp1 dependent manner, which has a similar effect to Drp1 inhibitor Mdivi-1. These data show that AMPK, as an upstream negative regulator of Drp1, ameliorates mitochondrial dysfunction induced by S. uberis infection.


Assuntos
Proteínas Quinases Ativadas por AMP , Dinaminas , Dinâmica Mitocondrial , Infecções Estreptocócicas , Streptococcus , Feminino , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio , Dinaminas/genética , Dinaminas/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/fisiopatologia , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo
7.
Virulence ; 13(1): 1684-1696, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36128739

RESUMO

Staphylococcus aureus can survive within phagocytes. Indeed, we confirm in this study that approximately 10% of population persists in macrophages during S. aureus infection, while the rest are eliminated due to bacteriolysis, which is of particular interest to us. Herein, we observe that the bacteriolysis is an early event accompanied by macrophage death during S. aureus infection. Furthermore, the cell death is significantly accelerated following increased intracellular bacteriolysis, indicating that intracellular bacteriolysis induces cell death. Subsequently, we establish that the cell death is not apoptosis or pyroptosis, but AIM2-mediated necroptosis, accompanied by AIM2 inflammasome activation. This finding challenges the classical model that the cell death that accompanies inflammasome activation is always pyroptosis. In addition, we observe that the apoptosis-associated genes are highly inhibited during S. aureus infection. Finally, we establish in vivo that increased bacteriolysis significantly enhances S. aureus pathogenicity by promoting its dissemination to kidney and leading to an inflammatory cytokine storm in AIM2-mediated manner. Collectively, our data demonstrate that bacteriolysis is detrimental when triggered in excess and its side effect is mediated by AIM2. Meanwhile, we propose a potential immune manipulation strategy by which S. aureus sacrifices the minority to trigger a limited necroptosis, thereby releasing signals from dead cells to inhibit apoptosis and other anti-inflammatory cascades of live cells, eventually surviving within host cells and establishing infection.


Assuntos
Inflamassomos , Infecções Estafilocócicas , Bacteriólise , Proteínas de Ligação a DNA/genética , Humanos , Inflamassomos/genética , Inflamação , Necroptose , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulência
8.
Cytokine ; 91: 30-37, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27987394

RESUMO

Inflammasomes are multiprotein complexes that control the production of IL-1ß and IL-18. NLRP3 inflammasome, the most characterized inflammasome, plays prominent roles in defense against infection, however aberrant activation is deleterious and leads to diseases. Therefore, its tight control offers therapeutic promise. Liver X receptors (LXRs) have significant anti-inflammatory properties. Whether LXRs regulate inflammasome remains unresolved. We thus tested the hypothesis that LXR's anti-inflammatory properties may result from its ability to suppress inflammasome activation. In this study, LXRs agonists inhibited the induction of IL-1ß production, caspase-1 cleavage and ASC oligomerization by NLRP3 inflammasome. The agonists also inhibited inflammasome-associated mtROS production. Importantly, the agonists inhibited the priming of inflammasome activation. In vivo data also showed that LXRs agonist prevented NLRP3-dependent peritonitis. In conclusion, LXRs agonists are identified to potently suppress NLRP3 inflammasome and the regulation of LXRs signaling is a potential therapeutic for inflammasome-driven diseases.


Assuntos
Inflamassomos/imunologia , Receptores X do Fígado/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Peritonite/imunologia , Transdução de Sinais/imunologia , Animais , Caspase 3/imunologia , Linhagem Celular , Interleucina-1beta/imunologia , Receptores X do Fígado/imunologia , Camundongos , Peritonite/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA