Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Agric Food Chem ; 70(29): 9166-9178, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35837734

RESUMO

Myogenesis is an essential process that can affect the yield and quality of beef. Transcriptional studies have shown that histone deacetylase 11 (HDAC11) was differentially expressed in muscle tissues of 6 and 18 month old Longlin cattle, but its role in the regulation of myogenesis remains unclear. This study aimed to determine the role of HDAC11 in the proliferation and differentiation of bovine muscle stem cells (MuSCs). HDAC11 promoted MuSC proliferation by activating Notch signaling and inhibited myoblast differentiation by reducing MyoD1 transcription. In addition, overexpression of HDAC11 inhibited the repair regeneration process of muscle in mice. HDAC11 was found to be a novel key target for the control of myogenesis, and this is a theoretical basis for the development of HDAC11-specific modulators as a new strategy to regulate myogenesis.


Assuntos
Histona Desacetilases , Mioblastos , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Regeneração/genética , Transdução de Sinais
2.
BMC Genomics ; 23(1): 267, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387588

RESUMO

BACKGROUND: The growth and development of muscle stem cells (MuSCs) are significant events known to affect muscle plasticity, disease, meat production, and meat quality, which involves the types and functions of mRNA and non-coding RNA. Here, MuSCs were cultured from Guangxi fetal cattle. RNA sequencing was used to analyze the RNA expression of mRNA and non-coding RNAs during the cell proliferation and differentiation phases. RESULTS: Two thousand one hundred forty-eight mRNAs and 888 non-coding RNAs were differentially expressed between cell proliferation and differentiation phases, including 113 miRNAs, 662 lncRNAs, and 113 circRNAs. RT-qPCR verified the differential expression levels of mRNAs and non-coding RNAs, and the differentially expressed circUBE2Q2 was subsequently characterized. Expression profile analysis revealed that circUBE2Q2 was abundant in muscle tissues and intramuscular fat. The expression of cricUBE2Q2 was also significantly upregulated during MuSCs myogenic differentiation and SVFs adipogenic differentiation and decreased with age in cattle muscle tissue. Finally, the molecular mechanism of circUBE2Q2 regulating MuSCs function that affects skeletal muscle development was investigated. The results showed that circUBE2Q2 could serve as a sponge for miR-133a, significantly promoting differentiation and apoptosis of cultured MuSCs, and inhibiting proliferation of MuSCs. CONCLUSIONS: CircUBE2Q2 is associated with muscle growth and development and induces MuSCs myogenic differentiation through sponging miR-133a. This study will provide new clues for the mechanisms by which mRNAs and non-coding RNAs regulate skeletal muscle growth and development, affecting muscle quality and diseases.


Assuntos
MicroRNAs , Desenvolvimento Muscular , Animais , Bovinos , Diferenciação Celular/genética , China , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculos/metabolismo , Mioblastos/metabolismo , RNA Mensageiro/genética
3.
Biol Reprod ; 102(4): 817-827, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31916576

RESUMO

Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.


Assuntos
Blastocisto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica/genética , Chaperonas Moleculares/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Dano ao DNA , Feminino , Camundongos , Chaperonas Moleculares/genética
4.
Asian-Australas J Anim Sci ; 29(10): 1407-15, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26954139

RESUMO

Isolation and culture of spermatogonial stem cells (SSCs) are attractive for production of genetic modified offspring. In the present study, buffalo spermatogonial stem-like cells were isolated, cultured and expression pattern of different germ cell marker genes were determined. To recover spermatogonia, testes from age 3 to 7 months of buffalo were decapsulated, and seminiferous tubules were enzymatically dissociated. Two types of cells, immature sertoli cell and type A spermatogonia were observed in buffalo testes in this stage. Germ cell marker genes, OCT3/4 (Pou5f1), THY-1, c-kit, PGP9.5 (UCHL-1) and Dolichos biflorus agglutinin, were determined to be expressed both in mRNA and protein level by reverse transcription polymerase chain reaction and immunostaining in buffalo testes and buffalo spermatogonial stem-like cells, respectively. In the following, when the isolated buffalo buffalo spermatogonial stem-like cells were cultured in the medium supplemented 2.5% fetal bovine serum and 40 ng/mL glial cell-derived neurotrophic factor medium, SSCs proliferation efficiency and colony number were significantly improved than those of other groups (p<0.05). These findings may help in isolation and establishing long term in vitro culture system for buffalo spermatogonial stem-like cells, and accelerating the generation of genetic modified buffaloes.

5.
Int J Mol Sci ; 16(3): 6545-56, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25807262

RESUMO

Clinical organ allotransplantation is limited by the availability of deceased human donors. However, the transplantation of human organs produced in other species would provide an unlimited number of organs. The pig has been identified as the most suitable source of organs for humans as organs of any size would be available. Genome editing by RNA-guided endonucleases, also known as clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), in combination with induced pluripotent stem cells (iPSC), may have the potential to enable the creation of human organs from genetically-modified chimaeric pigs. These could potentially provide an unlimited supply of organs that would not be rejected by the recipient's immune system. However, substantial research is needed to prove that this approach will work. Genetic modification of chimaeric pigs could also provide useful models for developing therapies for various human diseases, especially in relation to drug development.


Assuntos
Endonucleases/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA