Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 2983-2996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139741

RESUMO

Purpose: This study aimed to investigate the abnormal infiltration of immune cells in type 1 diabetes mellitus (T1D) and elucidate their regulatory mechanisms. Methods: Public T1D-related gene expression data were obtained from the Gene Expression Omnibus database.The GSE123658 dataset analyzed whole blood RNA-seq data from type 1 diabetic patients and healthy volunteers. The GSE110914 dataset analyzed neutrophils purified from peripheral blood of patients with symptomatic and pre-symptomatic type 1 diabetes (T1D), at risk of T1D, and healthy controls. Immune cell infiltration analysis was performed to identify abnormally infiltrating immune cells. Differentially expressed immune genes (DEIGs) in T1D samples were identified, followed by the construction of an immune gene signature (IGS) using a protein-protein interaction (PPI) network and Least absolute shrinkage and selection operator Cox regression analyses (LASSO Cox regression analyses). The regulatory mechanisms underlying IGS were explored using gene set enrichment analysis. Furthermore, expression validation, diagnostic efficacy evaluation, and upstream miRNA prediction of hub signature genes were performed. We verified the miRNA expression of the key gene colony stimulating factor 1 (CSF1) and microRNA-326 (miR-326) by reverse transcription-quantitative PCR (RT‒qPCR). Results: The proportion of infiltrating T and natural killer (NK) cells differed between the T1D and control samples, and 207 immune genes (IGs) related to these immune cells were extracted. After differential expression, PPI, and LASSO Cox regression analyses, four signature DEIGs were identified for IGS construction: notch receptor 1 (NOTCH1), Janus kinase 3 (JAK3), tumor necrosis factor receptor superfamily member 4(TNFRSF4), and CSF1. Key pathways such as the Toll-like receptor signaling pathway were significantly activated in the high-risk group. Moreover, the upregulation of CSF1 in T1D samples was confirmed using a validation dataset, and CSF1 showed high diagnostic efficacy for T1D. Furthermore, CSF1 was targeted by miR-326.We used validated key genes in T1D patients, several of which were confirmed by RT‒qPCR. Conclusion: In conclusion, the identified key IGs may play an important role in T1D. CSF1 can be developed as a novel diagnostic biomarker for T1D.

3.
NPJ Parkinsons Dis ; 10(1): 134, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043730

RESUMO

While numerous single nucleotide variants and small indels have been identified in Parkinson's disease (PD), the contribution of structural variants (SVs), copy number variants (CNVs), and short tandem repeats (STRs) remains poorly understood. Here we investigated the association using the high-depth whole-genome sequencing data from 466 Chinese PD patients and 513 controls. Totally, we identified 29,561 SVs, 32,153 CNVs, and 174,905 STRs, and found that CNV deletions were significantly enriched in the end-proportion of autosomal chromosomes in PD. After genome-wide association analysis and replication in an external cohort of 352 cases and 547 controls, we validated that the 1.6 kb-deletion neighboring MUC19, 12.4kb-deletion near RXFP1 and GGGAAA repeats in SLC2A13 were significantly associated with PD. Moreover, the MUC19 deletion and the SLC2A13 5-copy repeat reduced the penetrance of the LRRK2 G2385R variant. Moreover, genes with these variants were dosage-sensitive. These data provided novel insights into the genetic architecture of PD.

4.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928290

RESUMO

Influenza virus infection poses a great threat to human health globally each year. Non-coding RNAs (ncRNAs) in the human genome have been reported to participate in the replication process of the influenza virus, among which there are still many unknowns about Long Intergenic Non-Coding RNAs (LincRNAs) in the cell cycle of viral infections. Here, we observed an increased expression of Linc01615 in A549 cells upon influenza virus PR8 infection, accompanied by the successful activation of the intracellular immune system. The knockdown of Linc01615 using the shRNAs promoted the proliferation of the influenza A virus, and the intracellular immune system was inhibited, in which the expressions of IFN-ß, IL-28A, IL-29, ISG-15, MX1, and MX2 were decreased. Predictions from the catRAPID website suggested a potential interaction between Linc01615 and DHX9. Also, knocking down Linc01615 promoted influenza virus proliferation. The subsequent transcriptome sequencing results indicated a decrease in Linc01615 expression after influenza virus infection when DHX9 was knocked down. Further analysis through cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) in HEK293 cells stably expressing DHX9 confirmed the interaction between DHX9 and Linc01615. We speculate that DHX9 may interact with Linc01615 to partake in influenza virus replication and that Linc01615 helps to activate the intracellular immune system. These findings suggest a deeper connection between DHX9 and Linc01615, which highlights the significant role of Linc01615 in the influenza virus replication process. This research provides valuable insights into understanding influenza virus replication and offers new targets for preventing influenza virus infections.


Assuntos
RNA Helicases DEAD-box , Influenza Humana , RNA Longo não Codificante , Replicação Viral , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células A549 , Células HEK293 , Influenza Humana/virologia , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Vírus da Influenza A/fisiologia , Animais , Cães , Técnicas de Silenciamento de Genes , Proteínas de Neoplasias
5.
Vaccines (Basel) ; 12(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932336

RESUMO

The Bursa of Fabricius, an avian unique humoral immune organ, is instrumental to B cell development. Bursal-derived peptide BP9 fosters B-cell development and formation. Yet, the exact mechanism wherein BP9 impacts B cell differentiation and antigenic presentation remains undefined. In this paper, B cell activation and differentiation in the spleen cells from mice immunized with the AIV vaccine and BP9 were detected following flow cytometry (FCM) analysis. Furthermore, the molecular mechanism of BP9 in B cell differentiation in vivo was investigated with RNA sequencing technology. To verify the potential functional mechanism of BP9 in the antigenic presentation process, the transcriptome molecular basis of chicken macrophages stimulated by BP9 was measured via high-throughput sequencing technology. The results proved that when given in experimental dosages, BP9 notably accelerated total B cells, and enhanced B-cell differentiation and plasma cell production. The gene expression profiles of B cells from mice immunized with 0.01 mg/mL BP9 and AIV vaccine disclosed that 0.01 mg/mL BP9 initiated the enrichment of several biological functions and significantly stimulated key B-cell pathways in immunized mice. Crucially, a total of 4093 differentially expressed genes were identified in B cells with BP9 stimulation, including 943 upregulated genes and 3150 downregulated genes. Additionally, BP9 induced various cytokine productions in the chicken macrophage HD11 cells and activated 9 upregulated and 20 downregulated differential miRNAs, which were involved in various signal and biological processes. Furthermore, BP9 stimulated the activation of multiple transcription factors in HD11 cells, which was related to antigen presentation processes. In summary, these results suggested that BP9 might promote B cell differentiation and induce antigen presentation, which might provide the valuable insights into the mechanism of B cell differentiation upon bursal-derived immunomodulating peptide stimulation and provide a solid experimental groundwork for enhancing vaccine-induced immunity.

6.
Avian Pathol ; 53(5): 390-399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38563198

RESUMO

Avian influenza (AI), caused by H9N2 subtype avian influenza virus (AIV), poses a serious threat to poultry farming and public health due to its transmissibility and pathogenicity. The PB2 protein is a major component of the viral RNA polymerase complex. It is of great importance to identify the antigenic determinants of the PB2 protein to explore the function of the PB2 protein. In this study, the PB2 sequence of H9N2 subtype AIV, from 1090 to 1689 bp, was cloned and expressed. The recombinant PB2 protein with cutting gel was used to immunize BALB/c mice. After cell fusion, the hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the PB2 protein were screened by indirect ELISA and western blotting, and the antigenic epitopes of mAbs were identified by constructing truncated overlapping fragments in the PB2 protein of H9N2 subtype AIV. The results showed that three hybridoma cell lines (4B7, 4D10, and 5H1) that stably secreted mAbs specific to the PB2 protein were screened; the heavy chain of 4B7 was IgG2α, those of 4D10 and 5H1 were IgG1, and all three mAbs had kappa light chain. Also, the minimum B-cell epitope recognized was 475LRGVRVSK482 and 528TITYSSPMMW537. Homology analysis showed that these two epitopes were conserved among the different subtypes of AIV strains and located on the surface of the PB2 protein. The above findings provide an experimental foundation for further investigation of the function of the PB2 protein and developing monoclonal antibody-based diagnostic kits.


Assuntos
Anticorpos Monoclonais , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Camundongos Endogâmicos BALB C , Proteínas Virais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Animais , Anticorpos Monoclonais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Camundongos , Influenza Aviária/virologia , Influenza Aviária/imunologia , Epitopos de Linfócito B/imunologia , Hibridomas , RNA Polimerase Dependente de RNA/genética , Anticorpos Antivirais/imunologia , Galinhas/virologia , Feminino
7.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896944

RESUMO

Chicken melanoma differentiation-associated gene 5 (MDA5) is a member of the RLRs family that recognizes the viral RNAs invading cells and activates downstream interferon regulatory pathways, thereby inhibiting viral replication. The caspase activation and recruitment domain (CARD) is the most important region in MDA5 protein. However, the antiviral and immune enhancement of MDA5 with the CARD region remains unclear. In this study, two truncated MDA5 genes with different CARD regions, namely MDA5-1 with CARD1 plus partial CARD2 domain and MDA5-2 with CARD1 plus complete CARD2 domain, were cloned via reverse transcription PCR and ligated into plasmid Flag-N vector to be Flag-MDA5-1 and Flag-MDA5-2 plasmids. DF-1 cells were transfected with two plasmids for 24 h and then inoculated with H9N2 virus (0.1 MOI) for 6 h to detect the levels of IFN-ß, PKR, MAVS, and viral HA, NA, and NS proteins expression. The results showed that MDA5-1 and MDA5-2 increased the expression of IFN-ß and PKR, activated the downstream molecule MAVS production, and inhibited the expression of HA, NA, and NS proteins. The knockdown of MDA5 genes confirmed that MDA5-2 had a stronger antiviral effect than that of MDA5-1. Furthermore, the recombinant proteins MDA5-1 and MDA5-2 were combined with H9N2 inactivated vaccine to immunize SPF chickens subcutaneously injected in the neck three times. The immune response of the immunized chicken was investigated. It was observed that the antibody titers and expressions of immune-related molecules from the chicken immunized with MDA5-1 and MDA5-2 group were increased, in which the inducing function of MDA5-2 groups was the highest among all immunization groups. These results suggested that the truncated MDA5 recombinant proteins with complete CARD2 region could play vital roles in antiviral and immune enhancement. This study provides important material for the further study of the immunoregulatory function and clinical applications of MDA5 protein.

8.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2489-2497, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899116

RESUMO

Constructing ecological security pattern and identifying ecological important areas are the focus of current research on regional ecological security. With Ningbo City as a case study area, we identified ecological sources by remote sensing ecological index, the ecological corridors and pinch point by circuit theory model, and the minimum spanning tree and cuts by graph theory algorithm. The results showed that there were 203 ecological sources in Ningbo, and that the main type of land cover was forest, including a small amount of paddy fields and flooded vegetation. There were 368 ecological corridors with a total length of 573.42 km, being dense in the southwest and sparse in the northeast. There were 91 ecological pinch points, which mainly distributed between coastal areas and closely related ecological sources. According to current situation, we put forward the optimization strategy with 187 primary corridors, 181 secondary corridors, 50 ecological restoration priority areas and 59 long-term ecological restoration areas. The optimization strategy combined with graph theory and circuit theory model would provide a refe-rence for the constructing of ecological security pattern.


Assuntos
Ecologia , Ecossistema , Conservação dos Recursos Naturais , Tecnologia de Sensoriamento Remoto , Florestas
9.
Avian Pathol ; 52(5): 377-387, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37581283

RESUMO

H9N2 subtype of avian influenza virus (AIV) is primarily a bird virus, which is widespread in clinical avian disease, and reported in cases of human infection. As one of the surface proteins of AIV, the neuraminidase (NA) protein plays an important role mainly in viral budding. However, vaccine development and detection methods for NA of H9N2 AIVs are in urgent clinical need. In this study, a truncated NA gene (205-900 bp) was cloned from the NA sequence of H9N2 strain, and then expressed using pET-28a (+) vector. This purified recombinant NA protein was used to immunize BALB/c mice, and the monoclonal antibodies were screened through the indirect enzyme-linked immunosorbent assay (ELISA). Next, eight prokaryotic expression vectors were constructed for epitope identification. After cell fusion, three hybridoma cell lines producing the antibodies special to NA protein were screened by ELISA, western blotting, and indirect immunofluorescence; these were named 1B10, 2B6, and 5B2, respectively. Epitope scanning techniques were used to identify three B-cell epitopes recognized by these three monoclonal antibodies, 196KNATASIIYDGMLVD210, 210DSIGSWSKNIL220 and 221RTQESECVCI230. The subsequent homology analysis revealed the three epitopes were highly conserved in H9N2 AIV strains. The structural predictions of the antigenic epitopes indicated that all three epitopes were located in the catalytic region of NA. These results provide a basis for studying the function of the NA protein of H9N2 AIV and technical support for the development of a universal detection method based on anti-NA monoclonal antibodies.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Camundongos , Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H9N2/genética , Neuraminidase/genética , Proteínas Recombinantes/genética
10.
Vet Microbiol ; 284: 109824, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406407

RESUMO

The infection and replication of avian influenza virus (AIV) in host cells is a complex biological process that involves the transport of viral genes through the host cell's transport systems. Actin, microtubules and vimentin are known to facilitate transport of endosomes to the perinuclear region, but the biological role of Keratin, another intermediate filament, in viral transport during AIV replication is not well understood. In this study, the viral NS2 protein was used as the target protein to identify the potential interacting proteins following GST-Pulldown method and protein mass spectrometry. It was discovered that Keratin10 interacted with NS2. Subsequently, it was found AIV infection did not affect the gene level or protein level of keratin10 in HeLa cells, but when Keratin10 was knocked down, the expressions of viral NP mRNA and protein were reduced, and the generation of offspring virus also was also decreased. Furthermore, in early viral infection, Keratin10 could aggregate and co-localize with NP proteins, suggesting that Keratin10 might be connected to early viral transport. Additionally, it was demonstrated that Keratin10 co-localized with Lamp1 and that AIV particles were trapped in late endosomes/Lysosomes after Keratin10 was knocked down. Finally, it was discovered that the knocking down Keratin10 in HeLa cells led to an increase in the acidic pH of endosomes and lysosomes, which prevented AIV from undergoing fusion and uncoating, and then inhibited the process of the viral infection. Overall, the results suggested that Keratin10 might play the critical role in the release of vRNPs from LEs/Ls and can affect the generation of offspring virus. The study provides the novel insights into the role of Keratin10 in the process of AIV infection and transmission, which may have implications for developing new strategies to against AIV infections.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Galinhas , Endossomos , Genoma Viral , Células HeLa , Vírus da Influenza A Subtipo H9N2/genética , Replicação Viral
11.
Gland Surg ; 12(5): 619-627, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37284709

RESUMO

Background: Simultaneous pancreas and kidney transplantation (SPKT) is an effective treatment option for individuals who suffer from both diabetes mellitus and renal failure. However, experiments exploring nurse-led multidisciplinary team management during the perioperative management of patients undergoing SPKT are currently limited. This study aims to explore the clinical performance of a transplant nurse-led multidisciplinary team (MDT) in the perioperative management of SPKT patients. Methods: A total of 218 patients who underwent SPKT were randomly assigned to either a control group (n=116) receiving conventional care or an intervention group (n=102) managed through a transplant nurse-led MDT approach. The incidence of postoperative complications, hospital stay, total hospitalization cost, readmission rate, and postoperative nursing quality were compared between these 2 groups. Results: The intervention and control groups showed no significant differences in age, gender, and body mass index. Compared with the control group, the intervention group had a significantly lower incidence of postoperative pulmonary infection and gastrointestinal (GI) bleeding (27.6% vs. 14.7% and 31.0% vs. 15.7%, respectively, both P<0.05). Compared to the control group, the intervention group had significantly lower hospitalization costs, length of hospital stay, and readmission rate 30 days after discharge (32.98±9.10 vs. 36.78±15.36, 26.47±13.4 vs. 31.03±11.61 and 31.4% vs. 50.0%, respectively, all P<0.05). Additionally, the intervention group had significantly better quality of postoperative nursing care than the control group (11.61±0.69 vs. 9.64±1.42, P<0.01), the availability of infection control and prevention measures (11.74±0.61 vs. 10.53±1.11, P<0.01), the effectiveness of health education (11.73±0.61 vs. 10.41±1.06, P<0.01), the effectiveness of rehabilitation training (11.77±0.54 vs. 10.37±0.96, P<0.01), and the patient satisfaction with nursing care (11.83±0.42 vs. 10.81±1.08, P<0.01). Conclusions: The nurse-led MDT model for transplant patients can reduce complications, shorten hospital stays, and save costs. It also provides clear guidelines for nurses, improving care quality and aiding patient recovery. Trial Registration: Chinese Clinical Trial Registry ChiCTR1900026543.

12.
Front Microbiol ; 14: 1165378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249464

RESUMO

Japanese encephalitis is one of the most important insect-borne infectious disease with public health concern. The virus can break the blood-brain barrier and cause death or long-term sequela in infected humans or animals. Viral encephalitis is an important clinical feature of JEV infection. In recent studies, CircRNAs and related ceRNAs data illustrated the regulative role in many aspects of biological process and disease duration. It is believed that CircRNA regulates JEV infection in a ceRNA-dependent mechanism. In this study, brain tissues of experimental mice were sequenced and analysised. 61 differentially expressed circRNAs, 172 differentially expressed miRNAs and 706 differentially expressed mRNAs were identified by RNA-Sequencing and statistical analysis. CX3CR1 was determined as a key host factor impact JEV infection by microRNA interference measurement. CX3CR1 interaction network indicated circStrbp/miR709/CX3CR1 as a functional regulation axis. Further sequencing in BV2 cell shown CX3CR1 is a special target of miR-709 only during JEV infection. In summary, our study presented a new ceRNA pathway that impact JEV infection in vivo and in vitro, which could be a therapeutic target to fight against JEV.

13.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560743

RESUMO

The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and vaccine development, HA protein has been an important target for the development of broadly neutralizing antibodies against influenza A virus. To investigate the vital target determinant cluster in HA protein in this work, HA gene was cloned and expressed in the prokaryotic expression vector pET28a. The spleen lymphocytes from BALC/c mice immunized with the purified recombinant HA protein were fused with SP2/0 cells. After Hypoxanthine-Aminopterin-Thymidine (HAT) medium screening and indirect ELISA detection, six hybridoma cell lines producing anti-HA monoclonal antibodies were screened. The gradually truncated HA gene expression and western blotting were used to identify their major locations in epitopes specific to these monoclonal antibodies. It was found that the epitopes were located in three areas: 112NVENLEEL119, 117EELRSLFS124, and 170PIQDAQ175. Epitope 112NVENLEEL119 has a partial amino acid crossover with 117EELRSLFS124, which is located in the vestigial esterase domain "110-helix" of HA, and the monoclonal antibody recognizing these epitopes showed the neutralizing activity, suggesting that the region 112NVENLEELRSLFS124 might be a novel neutralizing epitope. The results of the homology analysis showed that these three epitopes were generally conserved in H9N2 subtype AIV, and will provide valuable insights into H9N2 vaccine design and improvement, as well as antibody-based therapies for treatment of H9N2 AIV infection.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Humanos , Animais , Camundongos , Epitopos , Vírus da Influenza A Subtipo H9N2/genética , Hemaglutininas , Esterases , Anticorpos Monoclonais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Anticorpos Antivirais , Galinhas
14.
Vet Res ; 53(1): 109, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517897

RESUMO

The bursa of Fabricius, the acknowledged humoral immune organ unique to birds, plays a vital role in B cell development. Bursopentin (BP5) derived from the bursa is reported to induce the development and formation of B cells. However, the mechanism of BP5 on B cell differentiation is still unclear. In this paper, total B lymphocytes from mice immunized with H9N2 subtype AIV vaccine were stimulated with BP5. The results show that BP5 at the experimental dosages promoted B cell differentiation, including the total B cells, activated B cells, differentiated B cells, mature B cells and plasma cells. Then, the in vivo immune experiment proved that the percentages of activated and differentiated B cells from mice immunized with AIV vaccine and 0.25 mg/mL BP5 were increased. To investigate the molecular mechanism of BP5 on B cell differentiation, the gene expression profiles of B cells purified from the spleen cells of mice immunized with AIV vaccine and BP5 were detected following RNA sequencing technology. The results show that BP5 at 0.05 and 0.25 mg/mL induced the enrichment of various biological functions, and stimulated five common significant enrichment pathways in B cells from the immunized mice. Additionally, 120 and 59 differentially expressed genes (DEG) represented transcriptional factors in B cells following 0.05 and 0.25 mg/mL BP5 immunization, respectively. In summary, these results suggest that BP5 regulates various gene expression involved in regulation of B cell development, which provides the knowledge required for additional studies on B cell differentiation in response to bursal-derived peptides and also provides an important experimental basis for improving vaccine immunity.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Camundongos , Animais , Baço , Transcriptoma , Galinhas , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Linfócitos B , Diferenciação Celular , Bolsa de Fabricius
15.
Vaccines (Basel) ; 10(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36423055

RESUMO

The bursa of Fabricius (BF) is a vital central humoral immune organ unique to birds. The bioactive peptide BP7 derived from bursa is reported to promote the vaccine immune response and antibody production. However, the regulatory effect on antigen presentation and B cell differentiation has been infrequently reported. In this paper, chicken macrophage HD11 cells were used for the cell model, and the cellular molecular expressions were determined by the fluorescent quantitative PCR (qPCR) after BP7 treatment. Then, the miRNA expression profile was analyzed by high-throughput sequencing. In addition, BALB/C mice were used as the animal model to detect B cell subtype with flow cytometry (FCM). The results showed that the expressions of four immune active molecules, IL-1ß, IL-6, iNOS, and IFN-α, in HD11 cells were significantly increased with 100 ng/mL BP7 treatment. Compared with the control group, there were 58 up-regulated and 61 down-regulated miRNAs in HD11 cells with BP7 treatment. The gene ontology (GO) function analysis found that BP7 mainly affected the various biological processes, molecular function, and MHC protein complex. Pathway analysis showed that 100 ng/mL BP7 stimulated various physiological metabolic pathways and signal transduction pathways, including the intestinal immune network producing IgA in HD11 cells. Furthermore, it was found that BP7 in vitro stimulated B cell populations, as well as plasma cells in spleen cells from the immunized mice. Additionally, B cell activation subpopulations were increased in mice immunized with the AIV vaccine and BP7. These results proved that BP7 stimulated various differentially expressed genes in chicken macrophage HD11 cells, and induced B cell differentiation in the immunized mice, which suggested that BP7 might participate in the antigen presentation process, thereby promoting the differentiation of B cells. These results provide an important basis for the mechanism of bursal-derived peptide on B cell development, and offer the experimental basis for the development of adjuvants.

16.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016436

RESUMO

Avian influenza caused by H9N2 subtype avian influenza virus (AIV) poses a great threat to the healthy development of the poultry industry. Vimentin is closely related to intracellular lipid metabolism, which plays an important role during the viral infection process. However, the function of lipid metabolism and vimentin on H9N2 AIV replication is unclear. In this paper, the cholesterol level and 3-hydroxy-3-methylglutaryl coenzyme a reductase (HMGCR) phosphorylation were investigated in vimentin knockout (KO) and human cervical carcinoma cells (HeLa) cell with or without AIV infection. The results showed that compared to the control group without infected with H9N2 subtype AIV, the cholesterol contents were significantly increased, while HMGCR phosphorylation level was reduced in both KO and HeLa cell after virus infection. Furthermore, viral replication was significantly inhibited in the cells treated with the cholesterol inhibitor lovastatin. Compared with the control group, adenylate activated protein kinase (AMPK), a kinase regulating HMGCR enzymatic activity was inhibited in both KO and HeLa cells in the infected virus group, and AMPK phosphorylation levels were significantly lower in KO HeLa cell than that of HeLa cells. Additionally, after MßCD treatment, viral hemagglutinin (HA) gene level was significantly decreased in HeLa cells, while it was significantly increased in KO HeLa cells. In addition, vimentin expression was significantly increased in MßCD-treated HeLa cells with the viral infection and returned to normal levels after exogenous cholesterol to backfill the MßCD-treated cells. Therefore, the disruption of lipid rafts during the binding phase of viral invasion of cells significantly reduced viral infection. These studies indicated that the lipid rafts and cholesterol levels might be critical for H9N2 subtype AIV infection of human-derived cells and that vimentin might play an important role in the regulation of lipids on viral replication, which provided an important antiviral target against influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Proteínas Quinases Ativadas por AMP , Animais , Galinhas , Células HeLa , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Metabolismo dos Lipídeos , Vimentina/genética
17.
BMC Med Genomics ; 15(1): 173, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932023

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by predominant impairment of upper and lower motor neurons. Over 50 TARDBP mutations have been reported in both familial (FALS) and sporadic ALS (SALS). Some mutations in TARDBP, e.g. A382T and G294V, have genetic founder effects in certain geographic regions. However, such prevalence and founder effect have not been reported in Chinese. METHODS: Whole-exome sequencing (WES) was performed in 16 Chinese FALS patients, followed by Sanger sequencing for the TARDBP p.Gly298Ser mutation (G298S) in 798 SALS patients and 1,325 controls. Haplotype analysis using microsatellites flanking TARDBP was conducted in the G298S-carrying patients and noncarriers. The geographic distribution and phenotypic correlation of the TARDBP mutations reported worldwide were reviewed. RESULTS: WES detected the TARDBP G298S mutation in 8 FALS patients, and Sanger sequencing found additional 8 SALS cases, but no controls, carrying this mutation. All the 16 cases came from Southern China, and 7 of these patients shared the 117-286-257-145-246-270 allele for the D1S2736-D1S1151-D1S2667-D1S489-D1S434-D1S2697 markers, which was not found in the 92 non-carrier patients (0/92) (p < 0.0001) and 65 age-matched and neurologically normal individuals (0/65) (p < 0.0001). The A382T and G298S mutations were prevalent in Europeans and Eastern Asians, respectively. Additionally, carriers for the M337V mutation are dominated by bulbar onset with a long survival, whereas those for G298S are dominated by limb onset with a short survival. CONCLUSIONS: Some prevalent TARDBP mutations are distributed in a geographic pattern and related to clinical profiles. TARDBP G298S mutation is a founder mutation in the Southern Chinese ALS population.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA/genética , Esclerose Lateral Amiotrófica/genética , Povo Asiático/genética , Haplótipos , Humanos , Mutação
18.
Viruses ; 14(6)2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35746647

RESUMO

Avian Influenza (AI) caused by the H9N2 subtype of the avian influenza virus (AIV) poses a serious threat to both the poultry industry and to public health safety. NP is one of the major structural proteins in influenza viruses. B-cell determinants located on NP proteins have attracted increasing attention. In this study, based on the NP sequence of the H9N2 (A/chicken/Shandong/LY1/2017) strain, the truncated NP gene (71 AA-243 AA) was cloned and prokaryotically expressed in a pET-28a (+) vector. BALB/c mice were immunized with a purified recombinant of an NP protein to prepare a monoclonal antibody against NP proteins. The prokaryotic expression of four overlapping fragments, NP-N-96, NP-C-103, NP-C-54 and NP-C-49, were used to recognize an antigenic epitope of the NP protein. The results show that, after cell fusion, one hybridoma cell clone secreted the antibody specific to the NP protein, following screening with ELISA and indirect immunofluorescence, which is named the 4F5 monoclonal antibody (mAb). Western blotting on the overlapping fragments showed that the 230FQTAAQRA237 motif was identified as the minimal motif recognized by 4F5mAb, which was represented as the linear B-cell epitope of the NP protein. Homology analysis of this epitope shows that it was highly conserved in 18 AIVs analyzed in this study, and the epitope prediction results indicate that the epitope may be located on the surface of the NP protein. These results provide a strong experimental basis for studying the function of the NP protein of the H9N2 AIV and also strong technical support for the development of a universal assay based on an anti-NP monoclonal antibody.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Galinhas , Epitopos de Linfócito B/genética , Vírus da Influenza A Subtipo H9N2/genética , Camundongos
19.
Vaccines (Basel) ; 10(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35455365

RESUMO

CpG oligodeoxynucleotides (CpG ODN) present adjuvant activities for antigen proteins, which can induce humoral and cellular immune responses to antigens. However, the immunomodulatory functions of CpG ODNs with different sequences are very different. In this paper, six CpG ODNs with different sequences were designed based on CpG2007 as a template. Through the screening of CEF cells in vitro, the stimulating activity of CpG ODNs was determined. Then, two selected CpG ODN sequence backbones were modified by substituting the oxygen with sulfur (S-CpG) and verifying the immune activity. Next, to prove the feasibility of S-CpG as an immune potentiator, two immune models with or without white oil adjuvant were prepared in 20-day-old chicken vaccinations. The screening experiment in vitro showed that the inducing roles of CpG ODN 4 and 5 could strongly stimulate various immune-related molecular expressions. Additionally, CpG ODN 4 and 5 with sulfation modification significantly induced various cytokines' expressions. Furthermore, CpG ODN 4 and 5 induced the strongly humoral and cellular immune responses during vaccination, in which white oil, as an adjuvant, could significantly improve the immune effect of CpG ODN. These results provide an important experimental basis for exploring the structural characteristics and vaccine immunity of CpG ODN.

20.
Mitochondrial DNA B Resour ; 7(1): 175-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35005238

RESUMO

In this study, we reported the complete chloroplast genome sequence of Clivia robusta for the first time. The complete chloroplast genome of C. robusta was 157,130 bp in length, containing a large single-copy region (LSC, 85,430 bp), a small single-copy region (SSC, 18,278 bp), and two inverted repeat regions (IRs, 26,711 bp). The overall GC content was 38.01%. The chloroplast genome contained 128 genes in total, including 86 protein-coding, 34 tRNA, and eight rRNA genes. The phylogenetic tree showed that C. robusta formed a monophyletic clade with other Clivia species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA