Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Sci (Weinh) ; : e2400451, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828672

RESUMO

Wound infections pose a major healthcare issue, affecting the well-being of millions of patients worldwide. Effective intervention and on-site detection are important in wound management. However, current approaches are hindered by time-consuming analysis and a lack of technology for real-time monitoring and prompt therapy delivery. In this study, a smart wound patch system (SWPS) designed for wireless closed-loop and in-situ wound management is presented. The SWPS integrates a microfluidic structure, an organic electrochemical transistor (OECT) based sensor, an electrical stimulation module, and a miniaturized flexible printed circuit board (FPCB). The OECT incorporates a bacteria-responsive DNA hydrogel-coated gate for continuous monitoring of bacterial virulence at wound sites. Real-time detection of OECT readings and on-demand delivery of electrical cues to accelerate wound healing is facilitated by a mobile phone application linked with an FPCB containing low-power electronics equipped with parallel sensing and stimulation circuitry. In this proof-of-concept study, the functionality of the SWPS is validated and its application both in vitro and in vivo is demonstrated. This proposed system expands the arsenal of tools available for effective wound management and enables personalized treatment.

2.
Biomater Sci ; 12(5): 1185-1196, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38226542

RESUMO

The effective transportation of antibiotics to bacteria embedded within a biofilm consisting of a dense matrix of extracellular polymeric substances is still a challenge in the treatment of bacterial biofilm associated infections. Here, we developed an antibiotic nanocarrier constructed from quaternary ammonium-tethered hyperbranched polyureas (HPUs-QA), which showed high loading capacity for a model antibiotic, rifampicin, and high efficacy in the transportation of rifampicin to biofilms. The rifampicin-loaded HPUs-QA nanoassembly (HPUs-Rif/QA) demonstrated a synergistic antimicrobial effect in killing planktonic bacteria and eradicating the corresponding biofilms. Compared to the treatment of bacteria-infected chronic wounds by either HPUs-QA or rifampicin alone, HPUs-Rif/QA showed superior efficacy in promoting wound healing by more effectively inhibiting bacteria colonization. This study highlights the potential of the HPUs-QA nanoassembly in synergistic action with antibiotics for the treatment of biofilm associated infections.


Assuntos
Antibacterianos , Infecções Bacterianas , Polímeros , Humanos , Antibacterianos/farmacologia , Rifampina/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
Nat Cell Biol ; 25(11): 1625-1636, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945830

RESUMO

Mitochondrial export into the extracellular space is emerging as a fundamental cellular process implicated in diverse physiological activities. Although a few studies have shed light on the process of discarding damaged mitochondria, how mitochondria are exported and the functions of mitochondrial release remain largely unclear. Here we describe mitopherogenesis, a formerly unknown process that specifically secretes mitochondria through a unique extracellular vesicle termed a 'mitopher'. We observed that during sperm development in male Caenorhabditis elegans, healthy mitochondria are exported out of the spermatids through mitopherogenesis and each of the generated mitophers harbours only one mitochondrion. In mitopherogenesis, the plasma membrane first forms mitochondrion-embedding outward buds, which then promptly bud off and thereby result in the generation of mitophers. Mechanistically, extracellular protease signalling in the testis triggers mitopher formation from spermatids, which is partially mediated by the tyrosine kinase SPE-8. Moreover, mitopherogenesis requires normal microfilament dynamics, whereas myosin VI antagonizes mitopher generation. Strikingly, our three-dimensional electron microscopy analyses indicate that mitochondrial quantity requires precise modulation during sperm development, which is critically mediated by mitopherogenesis. Inhibition of mitopherogenesis causes accumulation of mitochondria in sperm, which may lead to sperm motility and fertility defects. Our findings identify mitopherogenesis as a previously undescribed process for mitochondria-specific ectocytosis, which may represent a fundamental branch of mechanisms underlying mitochondrial quantity control to regulate cell functions during development.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Animais , Masculino , Sêmen/metabolismo , Espermatozoides/metabolismo , Fertilidade , Caenorhabditis elegans/genética , Mitocôndrias/metabolismo
4.
Bioconjug Chem ; 33(7): 1319-1327, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35729781

RESUMO

The nontraditional intrinsic fluorescence (NTIF) of polymers containing heteroatoms has gained considerable attention due to its promising applications in label-free bioimaging. Aliphatic hyperbranched polyureas (aBPUs), which have recently shown great promise in the field of nanomedicine, bear controllable urea groups distributed on the branch points and thus are potential candidate luminogens. However, their NTIF properties and how their structures influence the NTIF properties have not been illustrated yet. Here, we addressed these issues by synthesizing a series of aBPUs with different degrees of branching (DBs) or different modifications. aBPUs exhibited an obvious NTIF phenomenon and with the increase of DBs, the NTIF enhanced as well. Chemical modifications either at the branching ends or in the interior of aBPUs could affect the NTIF performances, which were highly dependent on the types of modification. Disruption of the intra-/intermolecular hydrogen-bonding interactions decreased the NTIF. In addition, poly(ethylene glycol) (PEG)-modified aBPUs could self-assemble into nanospheres, and the formation of nanoassembly led to 89% enhancement on NTIF compared with the homogeneous solution of aBPUs-PEG in dimethylformamide (DMF). Finally, aBPUs-PEG nanoassembly demonstrated a capability in realizing label-free material imaging in vitro. These results shed light on the rational design of the polymer structures to achieve desired fluorescence with unconventional luminophores.


Assuntos
Polietilenoglicóis , Polímeros , Fluorescência , Nanomedicina/métodos , Polietilenoglicóis/química , Polímeros/química
5.
ACS Macro Lett ; 11(4): 452-459, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35575323

RESUMO

3D bioprinting of living materials represents an interesting paradigm toward the efficacy enhancement for the biosynthesis of various functional compounds in microorganisms. Previous studies have shown the success of 3D-printed bioactive systems in the production of small molecular compounds. However, the feasibility of such a strategy in producing macromolecules and how the geometry of the 3D scaffold influences the productivity are still unknown. In this study, we printed a series of 3D gelatin-based hydrogels immobilized with fermentation bacteria that can secrete hyaluronic acid (HA), a very useful natural polysaccharide in the fields of biomedicine and tissue engineering. The 3D-printed bioreactor was capable of producing HA, and an elevated yield was obtained with the system bearing a grid structure compared to that either with a solid structure or in a scaffold-free fermentation condition. As for the grid structure, bioreactors with a 90° strut angel and a median interfilament distance displayed the highest HA yield. Our findings highlighted the significant role of 3D printing in the spatial control of microorganism-laden hydrogel structures for the enhancement of biosynthesis efficiency.


Assuntos
Bioimpressão , Ácido Hialurônico/química , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
6.
STAR Protoc ; 2(4): 101013, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917984

RESUMO

Myristoylation is a type of lipidation with important functions. Owing to the lack of high-quality antibodies against myristoylation, developing alternative methods for profiling myristoylated proteins is important. Here, we provide a protocol for metabolic labeling using click chemistry to profile myristoylated proteins in C. elegans. Our approach improves the signal/noise ratio by covalently linking the myristoylated proteins to the beads. This protocol provides a highly specific and reproducible way for enriching myristoylated proteins, which could be modified to analyze other types of lipidations. For complete details on the use and execution of this protocol, please refer to Tang et al. (2021).


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácido Mirístico , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida/métodos , Química Click/métodos , Ácido Mirístico/análise , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
7.
J Biol Chem ; 284(18): 12373-83, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19269963

RESUMO

Protein-protein interaction in response to environmental conditions enables sophisticated biological and biotechnological processes. Aiming toward the rational design of a pH-sensitive protein-protein interaction, we engineered pH-sensitive mutants of streptococcal protein G B1, a binder to the IgG constant region. We systematically introduced histidine residues into the binding interface to cause electrostatic repulsion on the basis of a rigid body model. Exquisite pH sensitivity of this interaction was confirmed by surface plasmon resonance and affinity chromatography employing a clinically used human IgG. The pH-sensitive mechanism of the interaction was analyzed and evaluated from kinetic, thermodynamic, and structural viewpoints. Histidine-mediated electrostatic repulsion resulted in significant loss of exothermic heat of the binding that decreased the affinity only at acidic conditions, thereby improving the pH sensitivity. The reduced binding energy was partly recovered by "enthalpy-entropy compensation." Crystal structures of the designed mutants confirmed the validity of the rigid body model on which the effective electrostatic repulsion was based. Moreover, our data suggested that the entropy gain involved exclusion of water molecules solvated in a space formed by the introduced histidine and adjacent tryptophan residue. Our findings concerning the mechanism of histidine-introduced interactions will provide a guideline for the rational design of pH-sensitive protein-protein recognition.


Assuntos
Anticorpos Monoclonais/química , Proteínas de Bactérias/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Modelos Moleculares , Streptococcus/química , Anticorpos Monoclonais/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Histidina/química , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Cinética , Ligação Proteica , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Triptofano/química , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA