Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(13): 3611-3618, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530095

RESUMO

Further improving the activity and selectivity of photocatalytic CO2 reduction remains a challenge. Herein, we propose a new strategy for synergistically promoting photocatalytic CO2 reduction by combining two-dimensional (2D) ferroelectric polarization and single-atom catalysis. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the separation and migration of photogenerated carriers, which provides a prerequisite for enhancing the photocatalytic efficiency. In addition, the introduction of single Ag atoms can act as an electron reservoir to significantly modify the bonding configurations on the surface through proper static electron transfer, thus effectively promoting the adsorption and activation of CO2 molecules. More importantly, we found that switching the ferroelectric polarization can synergistically optimize the limiting potential as well as control the final products. This study provides a new approach for enhancing the catalytic activity and selectivity of photocatalytic CO2 reduction.

2.
J Phys Chem Lett ; 15(10): 2867-2875, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38446846

RESUMO

The rapid recombination of photogenerated carriers heavily restricts the photocatalytic efficiency. Here, we propose a new strategy to improve catalytic efficiency based on the ferroelectric van der Waals heterostructure (CuBiP2Se6/C2N). Combining density functional theory and the nonadiabatic molecular dynamics (NAMD) method, we have systematically analyzed the ground-state properties and carrier dynamics images in the CuBiP2Se6/C2N heterostructure. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the photogenerated carriers separation. NAMD results demonstrate that the excited-state carrier transfer and recombination processes in the CuBiP2Se6/C2N are consistent with a type II mechanism. Meanwhile, constructing the ferroelectric heterostructure can effectively prolong the carrier lifetime, from ∼65.98 to ∼124.54 ps. Moreover, the high quantum efficiency and tunable band edge positions mean that the CuBiP2Se6/C2N heterostructure is an excellent potential candidate material for photocatalytic water splitting.

3.
Phys Chem Chem Phys ; 25(10): 7519-7526, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36853620

RESUMO

Carrier mobility in titanium dioxide (TiO2) systems is a key factor for their application as energy materials, especially in solar cells and lithium-ion batteries. Studies on the diffusion of Li-ions and polarons in rutile TiO2 systems have attracted extensive attention. However, how their interaction affects the diffusion of Li-ions and electron polarons is largely unclear and related studies are relatively lacking. By using first-principles calculations, we systematically investigate the interaction between the intercalated Li-ions and electron polarons in rutile TiO2 materials. Our analysis shows that the diffusion barrier of the electron polarons decreases around the Li-ion. The interaction between the Li-ions and polarons would benefit their synergistic diffusion both in the pristine and defective rutile TiO2 systems. Our study reveals the synergistic effects between the ions and polarons, which is important for understanding the carrier properties in TiO2 systems and in further improving the performance of energy materials.

4.
J Phys Chem Lett ; 14(6): 1674-1683, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36757098

RESUMO

Using large-scale ab initio calculations and taking the two-dimensional C2N monolayer as a substrate, we sampled a large combinatorial space of C2N-supported homonuclear and heteronuclear dual-atom catalysts and built a detailed view of catalytic activity and stability toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The results indicate that regulating combinations of metal pairs could widely tune the catalytic performance. Pd2-, Pt2-, and PdPt-C2N could effectively balance the adsorption strength of intermediates and achieve optimal bifunctional activity. The favorable catalytic performance could also be realized on GaPd-C2N for the ORR and PdRh-C2N for the OER, surpassing corresponding homonuclear counterparts. The thermodynamic and electrochemical stability simulations reveal that these metal pairs can be stably anchored onto the C2N matrix. Multiple-level descriptors, including Gibbs free energy, d-band center, and bonding/antibonding orbital population, are established to track the activity trend and reveal the origin of activity, indicating that catalytic activity is intrinsically governed by the d-band center of metal pairs.

5.
J Phys Condens Matter ; 35(8)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537665

RESUMO

To explore high-energy-density materials, intense attention has been focused on how to stabilize the N-N bond in nitrogen-rich compounds. Here, we report several stable phases of erbium-nitrogen compounds ErNxas high-energy-density materials. Specifically, the phase diagrams of stable high-pressure structuresImmm-ErN2,C2-ErN3,P1--ErN4, andP1--ErN6, are theoretically studied by combining first-principles calculation with particle swarm optimization algorithm. In these erbium-nitrogen compounds, the N-N bonds are stabilized as diatomic quasi-molecule N2, helical-like nitrogen chains, armchair nitrogen chains, and armchair-anti-armchair nitrogen chains, respectively. Among them, theP1--ErN6harbors excellent stability at high thermal up to 1000 K. More importantly, theP1--ErN6has outstanding explosive performance with high-energy-density of 1.30 kJ g-1, detonation velocity of 10.87 km s-1, and detonation pressure of 812.98 kbar, which shows its promising application prospect as high-energy-density materials.

6.
J Phys Chem Lett ; 13(34): 8026-8032, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993680

RESUMO

The antimony trisulfide (Sb2S3) has been theoretically predicted to have various merits in exploiting high-performance thin-film solar cells and attracted intense attention. However, the power conversion efficiency of Sb2S3-based solar cells is yet to be satisfactory in experiments and the origin of large open circuit voltage (VOC) loss is still a controversial question. Based on first-principles calculations, we have systematically analyzed the excited state behavior and dynamics images of carriers in Sb2S3 materials. Our calculations showed that intrinsic defects like vacancy (VSb and VS) and antisites (SbS and SSb) are energetically accessible. More importantly, we found that the sulfide vacancy-bound excitons can produce a large Stokes shift of ∼0.66 eV, which could well rationalize the experimental observations like the reduction of VOC. These new findings suggest that the performance of Sb2S3-based solar cells might be largely enhanced by avoiding sulfide vacancy defects.

7.
Phys Chem Chem Phys ; 24(28): 17323-17328, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35815879

RESUMO

Revealing the origin of self-trapped excitons is a prerequisite for further improving the photoluminescence efficiency of low-dimensional organic perovskites. Here, the microscopic formation mechanism of intrinsic self-trapped excitons in one-dimensional (1D) C4N2H14PbX4 (X = Cl, Br and I) systems is investigated, and the polarization-luminescence relationship is established. Our results show that 1D-C4N2H14PbX4 has a low electronic dimension (flat band characteristics), which facilitates the formation of intrinsic self-trapped excitons. The potential well formed by local distortion of the [PbX6] octahedron is the origin of exciton self-trapping. Combined with the electronic density of states and partial charge density, we further confirmed the existence of intrinsic self-trapping excitons in 1D-C4N2H14PbX4. In addition, we found that the breaking of the central inversion symmetry will induce electric polarization, which greatly improves the transition probability of electrons. These results could potentially offer a new direction for improving the luminescence properties of 1D organic lead halide perovskites.

8.
Small ; 18(22): e2200601, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35652257

RESUMO

Point defects of heteroatoms and vacancies can activate the inert basal plane of molybdenum sulfide (MoS2 ) to improve its performance on catalyzing the hydrogen evolution reaction (HER). However, the synergy between heteroatoms and vacancies is still unclear. Here, a chemical vapor deposition-assisted in situ vanadium (V) doping method is used to synthesize monolayer MoS2 with abundant and tunable vacancies and V-dopants in the lattice. Ten delicate defect configurations are prepared to provide a complex system for the relationship investigation between microstructure and catalytic performance. The combination of on-chip electrochemical tests and theoretical calculations indicates that the HER performance greatly depends on the type and amount of defect configurations. The optimal configuration is that three V atoms are aggregated and accompanied by abundant sulfur vacancies, in which, H atoms directly interact with Mo and V atoms to form the most stable metal-bridge structure. The on-chip measurements also confirm that the sample with high concentrations of this type of defect configuration exhibits the best catalytic performance, indicating the efficient synergy in the optimal configuration. The revealed effects of defect configurations are expected to inspire the design and regulation of high-efficiency 2D catalysts.

9.
Sci Adv ; 8(24): eabo2675, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714193

RESUMO

Understanding how the nuclear quantum effects (NQEs) in the hydrogen bond (H-bond) network influence the photoexcited charge transfer at semiconductor/molecule interface is a challenging problem. By combining two kinds of emerging molecular dynamics methods at the ab initio level, the path integral-based molecular dynamics and time-dependent nonadiabatic molecular dynamics, and choosing CH3OH/TiO2 as a prototypical system to study, we find that the quantum proton motion in the H-bond network is strongly coupled with the ultrafast photoexcited charge dynamics at the interface. The hole trapping ability of the adsorbed methanol molecule is notably enhanced by the NQEs, and thus, it behaves as a hole scavenger on titanium dioxide. The critical role of the H-bond network is confirmed by in situ scanning tunneling microscope measurements with ultraviolet light illumination. It is concluded the quantum proton motion in the H-bond network plays a critical role in influencing the energy conversion efficiency based on photoexcitation.

10.
J Phys Condens Matter ; 34(22)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35263716

RESUMO

Phonon heat transport property in quantum devices is of great interesting since it presents significant quantum behaviors. In the past few decades, great efforts have been devoted to establish the theoretical method for phonon heat transport simulation in nanostructures. However, modeling phonon heat transport from wavelike coherent regime to particlelike incoherent regime remains a challenging task. The widely adopted theoretical approach, such as molecular dynamics, semiclassical Boltzmann transport equation, captures quantum mechanical effects within different degrees of approximation. Among them, Non-equilibrium Green's function (NEGF) method has attracted wide attention, as its ability to perform full quantum simulation including many-body interactions. In this review, we summarized recent theoretical advances of phonon NEGF method and the applications on the numerical simulation for phonon heat transport in nanostructures. At last, the challenges of numerical simulation are discussed.

11.
Nano Lett ; 22(5): 1858-1865, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35174707

RESUMO

Understanding the origin of charge-density wave (CDW) instability is important for manipulating novel collective electronic states. Many layered transition metal dichalcogenides (TMDs) share similarity in the structural and electronic instability, giving rise to diverse CDW phases and superconductivity. It is still puzzling that even isostructural and isoelectronic TMDs show distinct CDW features. For instance, bulk NbSe2 exhibits CDW order at low temperature, while bulk NbS2 displays no CDW instability. The CDW transitions in single-layer NbS2 and NbSe2 are also different. In the classic limit, we investigate the electron correlation effects on the dimensionality dependence of the CDW ordering. By performing ab initio path integral molecular dynamics simulations and comparative analyses, we further revealed significant nuclear quantum effects in these systems. Specifically, the quantum motion of sulfur anions significantly reduces the CDW transition temperature in both bulk and single-layer NbS2, resulting in distinct CDW features in the NbS2 and NbSe2 systems.

12.
J Phys Condens Matter ; 34(2)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638113

RESUMO

The nitrogen-rich compounds are promising candidates for high-energy-density applications, owing to the large difference in the bonding energy between triple and single/double nitrogen bonds. The exploration of stable copper-nitrogen (Cu-N) compounds with high-energy-density has been challenging for a long time. Recently, through a combination of high temperatures and pressures, a new copper diazenide compound (P63/mmc-CuN2) has been synthesized (Binnset al2019J. Phys. Chem. Lett.101109-1114). But the pressure-composition phase diagram of Cu-N compounds at different temperatures is still highly unclear. Here, by combining first-principles calculations with crystal structure prediction method, the Cu-N compounds with different stoichiometric ratios were searched within the pressure range of 0-150 GPa. Four Cu-N compounds are predicted to be thermodynamically stable at high pressures,Pnnm-CuN2, two CuN3compounds with theP-1 space group (named as I-CuN3and II-CuN3) andP21/m-CuN5containing cyclo-N5-. Finite temperature effects (vibrational energies) play a key role in stabilizing experimentally synthesizedP63/mmc-CuN2at ∼55 GPa, compared to our predictedPnnm-CuN2. These new Cu-N compounds show great promise for potential applications as high-energy-density materials with the energy densities of 1.57-2.74 kJ g-1.

13.
J Phys Chem Lett ; 12(43): 10472-10478, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34676763

RESUMO

Self-trapped excitons (STEs) have recently been observed in several metal halide perovskites (MHPs), especially in low-dimensional ones. Despite studies that have shown that factors like dopant, chemical composition, lattice distortion, and structural and electronic dimensionality may all affect the self-trapping of excitons, a general understanding of their mechanism of formation in MHPs is lacking. Here, we study the intrinsic and defect-induced self-trapping of excitons in three-, two-, and one-dimensional MHPs. We find that whether the free excitons could be trapped is simply determined by the competition of the energy-gap decrease and deformation-energy increase along with the lattice distortion. Both introducing halogen defects into the lattice and decreasing the dimensionality can tip the balance between them and thus facilitate the self-trapping of free excitons. This general picture of the mechanism of formation of STEs provides important insights into the design and development of high-performance white-light devices and solar cells with MHPs.

14.
ACS Omega ; 6(20): 13124-13133, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056462

RESUMO

On the basis of density functional theory calculations, we explored the catalytic properties of various heteroatom-doped black and gray arsenene toward the oxygen reduction reaction (ORR), the oxygen evolution reaction (OER), and the hydrogen evolution reaction (HER). The calculation results show that pristine black (b-As) and gray arsenene (g-As) exhibit poor catalytic performance because of too weak intermediate adsorption. Heteroatom doping plays a key role in optimizing catalytic performance. Among the candidate dopants O, C, P, S, and Sb, O is the most promising one used in arsenene to improve the ORR and OER catalytic performance. Embedding O atoms could widely tune the binding strength of reactive intermediates and improve the catalytic activity. Single O-doped g-AsO 1 can achieve efficient bifunctional activity for both the OER and the ORR with optimal potential gap. b-AsO 1 and b-AsO 2 exhibit the optimal OER and ORR catalytic performance, respectively. For the HER, double C-doped g-AsC 2 could tune the adsorption of hydrogen to an optimal value and significantly enhance the catalytic performance. These findings indicate that arsenene could provide a new platform to explore high-efficiency electrocatalysts.

15.
Nat Commun ; 12(1): 2191, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850155

RESUMO

Stability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g. 140°C). By coupling high-throughput experimentation with machine learning, we discover a weak correlation between high/low-temperature stability with a stability-reversal behavior. At high ageing temperatures, increasing organic cation (e.g. methylammonium) or decreasing inorganic cation (e.g. cesium) in multi-cation perovskites has detrimental impact on photo/thermal-stability; but below 100°C, the impact is reversed. The underlying mechanism is revealed by calculating the kinetic activation energy in perovskite decomposition. We further identify that incorporating at least 10 mol.% MA and up to 5 mol.% Cs/Rb to maximize the device stability at device-operating temperature (<100°C). We close by demonstrating the methylammonium-containing perovskite solar cells showing negligible efficiency loss compared to its initial efficiency after 1800 hours of working under illumination at 30°C.

16.
Adv Sci (Weinh) ; 7(24): 2002172, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344127

RESUMO

Accurate design of the 2D metal-semiconductor (M-S) heterostructure via the covalent combination of appropriate metallic and semiconducting materials is urgently needed for fabricating high-performance nanodevices and enhancing catalytic performance. Hence, the lateral epitaxial growth of M-S Sn x Mo1- x S2/MoS2 heterostructure is precisely prepared with in situ growth of metallic Sn x Mo1- x S2 by doping Sn atoms at semiconductor MoS2 edge via one-step chemical vapor deposition. The atomically sharp interface of this heterostructure exhibits clearly distinguished performance based on a series of characterizations. The oxygen evolution photoelectrocatalytic performance of the epitaxial M-S heterostructure is 2.5 times higher than that of pure MoS2 in microreactor, attributed to the efficient electron-hole separation and rapid charge transfer. This growth method provides a general strategy for fabricating seamless M-S lateral heterostructures by controllable doping heteroatoms. The M-S heterostructures show increased carrier migration rate and eliminated Fermi level pinning effect, contributing to their potential in devices and catalytic system.

17.
Small ; 16(24): e2001571, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32390233

RESUMO

Due to the earth abundance and tunable electronic properties, etc., transition metal oxides (TMOs) show attractive attention in oxygen evolution reaction. O-vacancies (Vo ) play important roles in tailoring the local surface and electronic environment to lower the activation barriers. Herein, an effective strategy is shown to enhance the oxygen evolution reduction (OER) performance on Co3 O4 ultrathin nanosheets via combined cation substitution and anion vacancies. The oxygen-deficient Fe-Co-O nanosheets (3-4 nm thickness) display an overpotential of 260 mV@10 mA cm-2 and a Tafel slope of 53 mV dec-1 , outperforming those of the benchmark RuO2 in 1.0 m KOH. Further calculations demonstrate that the combined introduction of Fe cation and Vo with appropriate location and content finely tune the intermediate absorption, consequently lowering the rate-limiting activation energy from 0.82 to as low as 0.15 eV. The feasibility is also proved by oxygen-deficient Ni-Co-O nanosheets. This work not only establishes a clear atomic-level correlation between cation substitution, anion vacancies, and OER performance, but also provides valuable insights for the rational design of highly efficient catalysts for OER.

18.
J Chem Phys ; 152(7): 074701, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087670

RESUMO

Understanding the behavior of H2-He binary mixtures at high pressure is of great importance. Two more recent experiments [J. Lim and C. S. Yoo, Phys. Rev. Lett. 120, 165301 (2018) and R. Turnbull et al., ibid. 121, 195702 (2018)] are in conflict, regarding the miscibility between H2 and He in solids at high pressure. On the basis of first-principles calculations combined with the structure prediction method, we investigate the miscibility for solid H2-He mixtures at pressures from 0 GPa to 200 GPa. It is found that there is no sign of miscibility and chemical reactivity in H2-He mixtures with any H:He ratio. Moreover, instead of H2-He mixtures, the calculated Raman modes of the N-H mixtures can better explain the characteristic peaks observed experimentally, which were claimed to be the H-He vibrational modes. These calculation results are more in line with the experimental findings by Turnbull et al. [Phys. Rev. Lett. 121, 195702 (2018)].

19.
Nanoscale Adv ; 2(4): 1603-1612, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132327

RESUMO

Designing effective catalysts by controlling morphology and structure is key to improving the energy efficiency of fuel cells. A good understanding of the effects of specific structures on electrocatalytic activity, selectivity, and stability is needed. Here, we propose a facile method to synthesize PtCu bimetallic nanostructures with controllable compositions by using Cu nanowires as a template and ascorbic acid as a reductant. A further annealing process provided the alloy PtCu with tunable crystal structures. The combination of distinct structures with tunable compositions in the form of PtCu nanowires provides plenty of information for better understanding the reaction mechanism during catalysis. HClO4 cyclic voltammetry (CV) tests confirmed that various phase transformations occurred in bimetallic and alloy samples, affecting morphology and unit cell structures. Under a bifunctional synergistic effect and the influence of the insertion of a second metal, the two series of structures show superior performance toward methanol electrooxidation. Typically, the post-product alloy A-Pt14Cu86 with a cubic structure (a = 3.702 Å) has better methanol oxidation reaction (MOR) catalysis performance. Density functional theory (DFT) calculations were performed to determine an optimal pathway using the Gibbs free energy and to verify the dependence of the electrocatalytic performance on the lattice structure via overpotential changes. Bimetallic PtCu has high CO tolerance, maintaining high stability. This work provides an approach for the systematic design of novel catalysts and the exploration of electrocatalytic mechanisms for fuel cells and other related applications.

20.
J Phys Condens Matter ; 32(2): 025202, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557744

RESUMO

Hydrogen gas produced by electrolysis has been considered as an excellent alternative to fossil fuels. Developing non-noble metal catalysts with high electrocatalytic activities is an effective way to reduce the cost of hydrogen production. Recently, black phosphorus (BP) based materials have been reported to have good potential as electrocatalysts for hydrogen evolution reaction (HER). Herein, we systematically study the catalytic performance of monolayer BP (phosphorene) and several chemically modified phosphorenes (N/S/C/O doping and adsorbed NH2/OH functional groups) for HER on the basis of first-principles calculations. For pristine phosphorene, the armchair edge shows much better catalytic activity than the plane site and zigzag edge. The electronic states of phosphorene near the Fermi level are strongly influenced by chemical modifications. Both of doping heteroatoms into the lattice and introducing NH2/OH functional groups can effectively improve the catalytic performance of the plane site and zigzag edge site, but slightly degrade the armchair edge. These theoretical results shed light on the microscopic understanding of the active sites in BP based electrocatalysts for HER and pave the way for further improving their catalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA