Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(36): 13699-13709, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37640368

RESUMO

Granular activated carbon treatment with postchlorination (GAC/Cl2) and chlorination followed by chloramination (Cl2/NH2Cl) represent two options for utilities to reduce DBP formation in drinking water. To compare the total cytotoxicity of waters treated by a pilot-scale GAC treatment system with postchlorination (and in some instances with prechlorination upstream of GAC (i.e., (Cl2)/GAC/Cl2)) and chlorination/chloramination (Cl2/NH2Cl) at ambient and elevated Br- and I- levels and at three different GAC ages, we applied the Chinese hamster ovary (CHO) cell cytotoxicity assay to whole-water extracts in conjunction with calculations of the cytotoxicity contributed by the 33 (semi)volatile DBPs lost during extractions. At both ambient and elevated Br- and I- levels, GAC/Cl2 and Cl2/NH2Cl achieved comparable reductions in the formation of regulated trihalomethanes (THMs) and haloacetic acids (HAAs). Nonetheless, GAC/Cl2 always resulted in lower total cytotoxicity than Cl2/NH2Cl, even at up to 65% total organic carbon breakthrough. Prechlorination formed (semi)volatile DBPs that were removed by the GAC, yet there was no substantial difference in total cytotoxicity between Cl2/GAC/Cl2 and GAC/Cl2. The poorly characterized fraction of DBPs captured by the bioassay dominated the total cytotoxicity when the source water contained ambient levels of Br- and I-. When the water was spiked with Br- and I-, the known, unregulated (semi)volatile DBPs and the uncharacterized fraction of DBPs were comparable contributors to total cytotoxicity; the contributions of regulated THMs and HAAs were comparatively minor.


Assuntos
Água Potável , Animais , Cricetinae , Halogenação , Carvão Vegetal , Células CHO , Cricetulus , Trialometanos
2.
Environ Pollut ; 258: 113720, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31831226

RESUMO

As a persistent organic pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) has been widely detected in aquatic environments. However, studies on the fate and transfer of BDE-47 in the aquatic food chain remain scarce. In this study, we investigated the bioaccumulation and elimination of BDE-47 in Chlorella pyrenoidosa, as well as the trophic transfer and biomagnification of BDE-47 in the "C. pyrenoidosa-Daphnia magna" food chain, using C-14 radioactive tracer technology. After 96 h of BDE-47 exposure, the algae accumulated 88.98% ± 0.59% of the initial radioactivity from the medium, and 36.09% ± 9.22% of the accumulated residues in the algae occurred in the form of bound residues. During 96 h of elimination, only 13% ± 0.50% of accumulated radioactivity in the algae was released into the medium. After 24 h of exposure, D. magna accumulated 35.99% ± 2.55% of the initial radioactivity via water filtration from the medium, and 31.35% ± 1.92% of the accumulated radioactivity in D. magna occurred as bound residues. However, D. magna accumulated 66.89% ± 2.37% of the accumulated radioactivity in the algae via food uptake from the contaminated algae, with a high portion of radioactivity observed as bound residues (83.40% ± 0.97% of accumulated radioactivity in D. magna). This indicated a reduction in the environmental risk of BDE-47. There was obvious biomagnification in the food chain between C. pyrenoidosa and D. magna (biomagnification factors, BMFs>1), resulting in environmental hazard transfer in the aquatic food chain. However, no metabolite was found during the exposure experiment, and further studies should be carried out to investigate the intrinsic mechanisms of the trophic transfer of BDE-47, especially in multilevel food chains. Therefore, this study elucidated the effect of dietary uptake on the bioaccumulation of BDE-47 in D. magna and provided new insight for future analysis regarding the bioaccumulation and biomagnification of organic pollutants in the food chain.


Assuntos
Bioacumulação , Chlorella/metabolismo , Daphnia/metabolismo , Cadeia Alimentar , Éteres Difenil Halogenados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA