RESUMO
4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was therefore to explore the generalizability of SR 4D Flow MRI using a combination of existing super-resolution base models, novel heterogeneous training sets, and dedicated ensemble learning techniques; the latter-most being effectively used for improved domain adaption in other domains or modalities, however, with no previous exploration in the setting of 4D Flow MRI. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with the novel use of ensemble learning in the setting of advanced fullfield flow imaging extending utility across various clinical areas of interest.
RESUMO
4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was to explore the generalizability of SR 4D Flow MRI using a combination of heterogeneous training sets and dedicated ensemble learning. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with ensemble learning extending utility across various clinical areas of interest.
RESUMO
Changes in cardiovascular hemodynamics are closely related to the development of aortic regurgitation (AR), a type of valvular heart disease. Metrics derived from blood flows are used to indicate AR onset and evaluate its severity. These metrics can be non-invasively obtained using four-dimensional (4D) flow magnetic resonance imaging (MRI), where accuracy is primarily dependent on spatial resolution. However, insufficient resolution often results from limitations in 4D flow MRI and complex aortic regurgitation hemodynamics. To address this, computational fluid dynamics simulations were transformed into synthetic 4D flow MRI data and used to train a variety of neural networks. These networks generated super-resolution, full-field phase images with an upsample factor of 4. Results showed decreased velocity error, high structural similarity scores, and improved learning capabilities from previous work. Further validation was performed on two sets of in vivo 4D flow MRI data and demonstrated success in de-noising flow images. This approach presents an opportunity to comprehensively analyse AR hemodynamics in a non-invasive manner.
Assuntos
Insuficiência da Valva Aórtica , Aprendizado Profundo , Humanos , Insuficiência da Valva Aórtica/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo/fisiologia , Hidrodinâmica , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Hemodinâmica , Imageamento Tridimensional/métodosRESUMO
Segmentation of the left ventricle (LV) in echocardiography is an important task for the quantification of volume and mass in heart disease. Continuing advances in echocardiography have extended imaging capabilities into the 3D domain, subsequently overcoming the geometric assumptions associated with conventional 2D acquisitions. Nevertheless, the analysis of 3D echocardiography (3DE) poses several challenges associated with limited spatial resolution, poor contrast-to-noise ratio, complex noise characteristics, and image anisotropy. To develop automated methods for 3DE analysis, a sufficiently large, labeled dataset is typically required. However, ground truth segmentations have historically been difficult to obtain due to the high inter-observer variability associated with manual analysis. We address this lack of expert consensus by registering labels derived from higher-resolution subject-specific cardiac magnetic resonance (CMR) images, producing 536 annotated 3DE images from 143 human subjects (10 of which were excluded). This heterogeneous population consists of healthy controls and patients with cardiac disease, across a range of demographics. To demonstrate the utility of such a dataset, a state-of-the-art, self-configuring deep learning network for semantic segmentation was employed for automated 3DE analysis. Using the proposed dataset for training, the network produced measurement biases of -9 ± 16 ml, -1 ± 10 ml, -2 ± 5 %, and 5 ± 23 g, for end-diastolic volume, end-systolic volume, ejection fraction, and mass, respectively, outperforming an expert human observer in terms of accuracy as well as scan-rescan reproducibility. As part of the Cardiac Atlas Project, we present here a large, publicly available 3DE dataset with ground truth labels that leverage the higher resolution and contrast of CMR, to provide a new benchmark for automated 3DE analysis. Such an approach not only reduces the effect of observer-specific bias present in manual 3DE annotations, but also enables the development of analysis techniques which exhibit better agreement with CMR compared to conventional methods. This represents an important step for enabling more efficient and accurate diagnostic and prognostic information to be obtained from echocardiography.
RESUMO
PURPOSE: Hemodynamic alterations are indicative of cerebrovascular disease. However, the narrow and tortuous cerebrovasculature complicates image-based assessment, especially when quantifying relative pressure. Here, we present a systematic evaluation of image-based cerebrovascular relative pressure mapping, investigating the accuracy of the routinely used reduced Bernoulli (RB), the extended unsteady Bernoulli (UB), and the full-field virtual work-energy relative pressure ( ν WERP) method. METHODS: Patient-specific in silico models were used to generate synthetic cerebrovascular 4D Flow MRI, with RB, UB, and ν WERP performance quantified as a function of spatiotemporal sampling and image noise. Cerebrovascular relative pressures were also derived in 4D Flow MRI from healthy volunteers ( n=8 ), acquired at two spatial resolutions (dx = 1.1 and 0.8 mm). RESULTS: The in silico analysis indicate that accurate relative pressure estimations are inherently coupled to spatial sampling: at dx = 1.0 mm high errors are reported for all methods; at dx = 0.5 mm ν WERP recovers relative pressures at a mean error of 0.02 ± 0.25 mm Hg, while errors remain higher for RB and UB (mean error of -2.18 ± 1.91 and -2.18 ± 1.87 mm Hg, respectively). The dependence on spatial sampling is also indicated in vivo, albeit with higher correlative dependence between resolutions using ν WERP (k = 0.64, R2 = 0.81 for dx = 1.1 vs. 0.8 mm) than with RB or UB (k = 0.04, R2 = 0.03, and k = 0.07, R2 = 0.07, respectively). CONCLUSION: Image-based full-field methods such as ν WERP enable cerebrovascular relative pressure mapping; however, accuracy is directly dependent on utilized spatial resolution.
Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Voluntários Saudáveis , Hemodinâmica , HumanosRESUMO
Remodeling in adults with repaired tetralogy of Fallot (rToF) may occur due to chronic pulmonary regurgitation, but may also be related to altered flow patterns, including vortices. We aimed to correlate and quantify relationships between vorticity and ventricular shape derived from atlas-based analysis of biventricular shape. Adult rToF (n = 12) patients underwent 4D flow and cine MRI imaging. Vorticity in the RV was computed after noise reduction using a neural network. A biventricular shape atlas built from 95 rToF patients was used to derive principal component modes, which were associated with vorticity and pulmonary regurgitant volume (PRV) using univariate and multivariate linear regression. Univariate analysis showed that indexed PRV correlated with 3 modes (r = -0.55,-0.50, and 0.6, all p < 0.05) associated with RV dilatation and an increase in basal bulging, apical bulging and tricuspid annulus tilting with more severe regurgitation, as well as a smaller LV and paradoxical movement of the septum. RV outflow and inflow vorticity were also correlated with these modes. However, total vorticity over the whole RV was correlated with two different modes (r = -0.62,-0.69, both p < 0.05). Higher vorticity was associated with both RV and LV shape changes including longer ventricular length, a larger bulge beside the tricuspid valve, and distinct tricuspid tilting. RV flow vorticity was associated with changes in biventricular geometry, distinct from associations with PRV. Flow vorticity may provide additional mechanistic information in rToF remodeling. Both LV and RV shapes are important in rToF RV flow patterns.
RESUMO
Wall shear stress (WSS) is an important contributor to vessel wall remodeling and atherosclerosis. However, image-based WSS estimation from 4D Flow MRI underestimates true WSS values, and the accuracy is dependent on spatial resolution, which is limited in 4D Flow MRI. To address this, we present a deep learning algorithm (WSSNet) to estimate WSS trained on aortic computational fluid dynamics (CFD) simulations. The 3D CFD velocity and coordinate point clouds were resampled into a 2D template of 48 × 93 points at two inward distances (randomly varied from 0.3 to 2.0 mm) from the vessel surface ("velocity sheets"). The algorithm was trained on 37 patient-specific geometries and velocity sheets. Results from 6 validation and test cases showed high accuracy against CFD WSS (mean absolute error 0.55 ± 0.60 Pa, relative error 4.34 ± 4.14%, 0.92 ± 0.05 Pearson correlation) and noisy synthetic 4D Flow MRI at 2.4 mm resolution (mean absolute error 0.99 ± 0.91 Pa, relative error 7.13 ± 6.27%, and 0.79 ± 0.10 Pearson correlation). Furthermore, the method was applied on in vivo 4D Flow MRI cases, effectively estimating WSS from standard clinical images. Compared with the existing parabolic fitting method, WSSNet estimates showed 2-3 × higher values, closer to CFD, and a Pearson correlation of 0.68 ± 0.12. This approach, considering both geometric and velocity information from the image, is capable of estimating spatiotemporal WSS with varying image resolution, and is more accurate than existing methods while still preserving the correct WSS pattern distribution.
RESUMO
PURPOSE: To demonstrate the feasibility and performance of a fully automated deep learning framework to estimate myocardial strain from short-axis cardiac MRI-tagged images. MATERIALS AND METHODS: In this retrospective cross-sectional study, 4508 cases from the U.K. Biobank were split randomly into 3244 training cases, 812 validation cases, and 452 test cases. Ground truth myocardial landmarks were defined and tracked by manual initialization and correction of deformable image registration using previously validated software with five readers. The fully automatic framework consisted of (a) a convolutional neural network (CNN) for localization and (b) a combination of a recurrent neural network (RNN) and a CNN to detect and track the myocardial landmarks through the image sequence for each slice. Radial and circumferential strain were then calculated from the motion of the landmarks and averaged on a slice basis. RESULTS: Within the test set, myocardial end-systolic circumferential Green strain errors were -0.001 ± 0.025, -0.001 ± 0.021, and 0.004 ± 0.035 in the basal, mid-, and apical slices, respectively (mean ± standard deviation of differences between predicted and manual strain). The framework reproduced significant reductions in circumferential strain in participants with diabetes, hypertensive participants, and participants with a previous heart attack. Typical processing time was approximately 260 frames (approximately 13 slices) per second on a GPU with 12 GB RAM compared with 6-8 minutes per slice for the manual analysis. CONCLUSION: The fully automated combined RNN and CNN framework for analysis of myocardial strain enabled unbiased strain evaluation in a high-throughput workflow, with similar ability to distinguish impairment due to diabetes, hypertension, and previous heart attack.Published under a CC BY 4.0 license. Supplemental material is available for this article.