Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Nat Commun ; 15(1): 8079, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278967

RESUMO

Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals.


Assuntos
Ecossistema , Mamíferos , Animais , Humanos , Mamíferos/fisiologia , Masculino , Feminino , Locomoção/fisiologia , Herbivoria/fisiologia , Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Especificidade da Espécie
2.
Sci Rep ; 14(1): 21644, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39284854

RESUMO

Western blot is a popular biomolecular analysis method for measuring the relative quantities of independent proteins in complex biological samples. However, variability in quantitative western blot data analysis poses a challenge in designing reproducible experiments. The lack of rigorous quantitative approaches in current western blot statistical methodology may result in irreproducible inferences. Here we describe best practices for the design and analysis of western blot experiments, with examples and demonstrations of how different analytical approaches can lead to widely varying outcomes. To facilitate best practices, we have developed the blotRig tool for designing and analyzing western blot experiments to improve their rigor and reproducibility. The blotRig application includes functions for counterbalancing experimental design by lane position, batch management across gels, and analytics with covariates and random effects.


Assuntos
Western Blotting , Reprodutibilidade dos Testes , Western Blotting/métodos , Western Blotting/normas , Projetos de Pesquisa , Software , Humanos
3.
Trauma Surg Acute Care Open ; 9(1): e001501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081460

RESUMO

Objectives: An estimated 14-23% of patients with traumatic brain injury (TBI) incur multiple lifetime TBIs. The relationship between prior TBI and outcomes in patients with moderate to severe TBI (msTBI) is not well delineated. We examined the associations between prior TBI, in-hospital mortality, and outcomes up to 12 months after injury in a prospective US msTBI cohort. Methods: Data from hospitalized subjects with Glasgow Coma Scale score of 3-12 were extracted from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study (enrollment period: 2014-2019). Prior TBI with amnesia or alteration of consciousness was assessed using the Ohio State University TBI Identification Method. Competing risk regressions adjusting for age, sex, psychiatric history, cranial injury and extracranial injury severity examined the associations between prior TBI and in-hospital mortality, with hospital discharged alive as the competing risk. Adjusted HRs (aHR (95% CI)) were reported. Multivariable logistic regressions assessed the associations between prior TBI, mortality, and unfavorable outcome (Glasgow Outcome Scale-Extended score 1-3 (vs. 4-8)) at 3, 6, and 12 months after injury. Results: Of 405 acute msTBI subjects, 21.5% had prior TBI, which was associated with male sex (87.4% vs. 77.0%, p=0.037) and psychiatric history (34.5% vs. 20.7%, p=0.010). In-hospital mortality was 10.1% (prior TBI: 17.2%, no prior TBI: 8.2%, p=0.025). Competing risk regressions indicated that prior TBI was associated with likelihood of in-hospital mortality (aHR=2.06 (1.01-4.22)), but not with hospital discharged alive. Prior TBI was not associated with mortality or unfavorable outcomes at 3, 6, and 12 months. Conclusions: After acute msTBI, prior TBI history is independently associated with in-hospital mortality but not with mortality or unfavorable outcomes within 12 months after injury. This selective association underscores the importance of collecting standardized prior TBI history data early after acute hospitalization to inform risk stratification. Prospective validation studies are needed. Level of evidence: IV. Trial registration number: NCT02119182.

4.
Neurotrauma Rep ; 5(1): 686-698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071986

RESUMO

Translation of spinal cord injury (SCI) therapeutics from pre-clinical animal studies into human studies is challenged by effect size variability, irreproducibility, and misalignment of evidence used by pre-clinical versus clinical literature. Clinical literature values reproducibility, with the highest grade evidence (class 1) consisting of meta-analysis demonstrating large therapeutic efficacy replicating across multiple studies. Conversely, pre-clinical literature values novelty over replication and lacks rigorous meta-analyses to assess reproducibility of effect sizes across multiple articles. Here, we applied modified clinical meta-analysis methods to pre-clinical studies, comparing effect sizes extracted from published literature to raw data on individual animals from these same studies. Literature-extracted data (LED) from numerical and graphical outcomes reported in publications were compared with individual animal data (IAD) deposited in a federally supported repository of SCI data. The animal groups from the IAD were matched with the same cohorts in the LED for a direct comparison. We applied random-effects meta-analysis to evaluate predictors of neuroconversion in LED versus IAD. We included publications with common injury models (contusive injuries) and standardized end-points (open field assessments). The extraction of data from 25 published articles yielded n = 1841 subjects, whereas IAD from these same articles included n = 2441 subjects. We observed differences in the number of experimental groups and animals per group, insufficient reporting of dropout animals, and missing information on experimental details. Meta-analysis revealed differences in effect sizes across LED versus IAD stratifications, for instance, severe injuries had the largest effect size in LED (standardized mean difference [SMD = 4.92]), but mild injuries had the largest effect size in IAD (SMD = 6.06). Publications with smaller sample sizes yielded larger effect sizes, while studies with larger sample sizes had smaller effects. The results demonstrate the feasibility of combining IAD analysis with traditional LED meta-analysis to assess effect size reproducibility in SCI.

5.
J Neurotrauma ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984940

RESUMO

The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) model is a widely recognized prognostic model applied after traumatic brain injury (TBI). However, it was developed with patient cohorts that may not reflect modern practice patterns in North America. We analyzed data from two sources: the placebo arm of the phase II double-blinded, multicenter, randomized controlled trial Prehospital Tranexamic Acid for TBI (TXA) cohort and an observational cohort with similar inclusion/exclusion criteria (Predictors of Low-risk Phenotypes after Traumatic Brain Injury Incorporating Proteomic Biomarker Signatures [PROTIPS] cohort). All three versions of the IMPACT model-core, extended, and laboratory-were evaluated for 6-month mortality (Glasgow Outcome Scale Extended [GOSE] = 1) and unfavorable outcomes (GOSE = 1-4). Calibration (intercept and slope) and discrimination (area under the receiver operating characteristic curve [ROC-AUC]) were used to assess model performance. We then compared three model updating methods-recalibration in the large, logistic recalibration, and coefficient update-with the best update method determined by likelihood ratio tests. In our calibration analysis, recalibration improved both intercepts and slopes, indicating more accurate predicted probabilities when recalibration was done. Discriminative performance of the IMPACT models, measured by AUC, showed mortality prediction ROCs between 0.61 and 0.82 for the TXA cohort, with the coefficient updated Lab model achieving the highest at 0.84. Unfavorable outcomes had lower AUCs, ranging from 0.60 to 0.79. Similarly, in the PROTIPS cohort, AUCs for mortality ranged from 0.75 to 0.82, with the coefficient updated Lab model also showing superior performance (AUC 0.84). Unfavorable outcomes in this cohort presented AUCs from 0.67 to 0.73, consistently lower than mortality predictions. The closed testing procedure using likelihood ratio tests consistently identified the coefficient update model as superior, outperforming the original and recalibrated models across all cohorts. In our comprehensive evaluation of the IMPACT model, the coefficient updated models were the best performing across all cohorts through a structured closed testing procedure. Thus, standardization of model updating procedures is needed to reproducibly determine the best performing versions of IMPACT that reflect the specific characteristics of a dataset.

6.
J Neurotrauma ; 41(13-14): e1761-e1779, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588130

RESUMO

Traumatic brain injury (TBI) patients frequently experience chronic pain that can enhance their suffering and significantly impair rehabilitative efforts. Clinical studies suggest that damage to the periaqueductal gray matter (PAG) following TBI, a principal center involved in endogenous pain control, may underlie the development of chronic pain. We hypothesized that TBI would diminish the usual pain control functions of the PAG, but that directly stimulating this center using a chemogenetic approach would restore descending pain modulation. We used a well-characterized lateral fluid percussion model (1.3 ± 0.1 atm) of TBI in male rats (n = 271) and measured hindpaw mechanical nociceptive withdrawal thresholds using von Frey filaments. To investigate the role of the PAG in pain both before and after TBI, we activated the neurons of the PAG using a Designer Receptor Exclusively Activated by Designer Drug (DREADD) viral construct. Immunohistochemical analysis of brain tissue was used to assess the location and confirm the appropriate expression of the viral constructs in the PAG. Activation of the PAG DREADD using clozapine N-oxide (CNO) caused hindpaw analgesia that could be blocked using opioid receptor antagonist, naloxone, in uninjured but not TBI rats. Due to the importance of descending serotonergic signaling in modulating nociception, we ablated spinal serotonin signaling using 5,7-DHT. This treatment strongly reduced CNO-mediated anti-nociceptive effects in TBI but not uninjured rats. To define the serotonergic receptor(s) required for the CNO-stimulated effects in TBI rats, we administered 5-HT7 (SB-269970) and 5-HT1A (WAY-100635) receptor antagonists but observed no effects. The selective 5-HT2A receptor antagonist ketanserin, however, blocked CNO's effects in the DREADD expressing TBI but not DREADD expressing sham TBI animals. Blockade of alpha-1 adrenergic receptors with prazosin also had no effect after TBI. Descending pain control originating in the PAG is mediated through opioid receptors in uninjured rats. TBI, however, fundamentally alters the descending nociceptive control circuitry such that serotonergic influences predominate, and those are mediated by the 5-HT2A receptor. These results provide further evidence that the PAG is a key target for anti-nociception after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Drogas Desenhadas , Substância Cinzenta Periaquedutal , Ratos Sprague-Dawley , Animais , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Masculino , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Drogas Desenhadas/farmacologia , Nociceptividade/efeitos dos fármacos
7.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649772

RESUMO

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Assuntos
Fator 3 Ativador da Transcrição , Biomarcadores , AVC Isquêmico , Neurônios , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Biomarcadores/metabolismo , Biomarcadores/sangue , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/sangue , Camundongos Knockout , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/complicações
8.
J Neurotrauma ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618713

RESUMO

Progression of intracranial hemorrhage is a common, potentially devastating complication after moderate/severe traumatic brain injury (TBI). Clinicians have few tools to predict which patients with traumatic intracranial hemorrhage on their initial head computed tomography (hCT) scan will progress. The objective of this investigation was to identify clinical, imaging, and/or protein biomarkers associated with progression of intracranial hemorrhage (PICH) after moderate/severe TBI and to create an accurate predictive model of PICH based on clinical features available at presentation. We analyzed a subset of subjects from the phase II double-blind, multi-center, randomized "Prehospital Tranexamic Acid Use for TBI" trial. This subset was limited to the placebo arm of the parent trial with evidence of hemorrhage on the initial hCT and a follow-up hCT 6 h after. PICH was defined as an increase in hemorrhage size by 30% or more, or the development of new hemorrhage in the intra- and extra-axial intracranial vault between the initial and the follow-up hCT. Two independent radiologists evaluated each hCT, and conflicts were adjudicated by a third. Clinical and radiographic characteristics were collected, along with plasma protein biomarkers at admission. Principal component analysis (PCA) was performed, and each principal component (PC) was interrogated for its association with PICH. Finally, expert opinion and recursive feature extraction (RFE) were used to select input features for the construction of several supervised classification models. Their ability to predict PICH was quantified and compared. In this subset of subjects (n = 104), 46% (n = 48) demonstrated PICH. Univariate analyses showed no association between PICH and age, sex, admission Glasgow Coma Scale (GCS), GCS motor subscore, presence of midline shift, admission platelet count or admission INR. Radiographic severity scores (Marshall score [p = 0.007], Rotterdam score [p = 0.004]), and initial hematoma volume [p = 0.005] were associated with PICH. Higher levels of admission glial fibrillary acidic protein (p < 0.001) and MAP (p = 0.011) were also associated with PICH. Of the PCs, PC1 was significantly associated with PICH (p = 0.0125). Using multimodal data input, machine learning classifiers successfully discriminated patients with or without PICH. Models composed of machine-selected features performed better than models composed of expert-selected variables (reaching an average of 77% accuracy, AUC = 0.78 versus AUC = 0.68 for the expert-selected variables). Predictive models utilizing variables measured at admission can accurately predict PICH, confirmed by the 6-hour follow-up hCT. Our best-performing models must now be externally validated in a separate cohort of TBI patients with low GCS and initial hCT positive for hemorrhage.

9.
Brain Commun ; 6(2): fcae071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495305

RESUMO

Enlarged perivascular spaces have been previously reported in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, but their significance and pathophysiology remains unclear. We investigated associations of white matter enlarged perivascular spaces with classical imaging measures, cognitive measures and plasma proteins to better understand what enlarged perivascular spaces represent in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and whether radiographic measures of enlarged perivascular spaces would be of value in future therapeutic discovery studies for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Twenty-four individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and 24 age- and sex-matched controls were included. Disease status was determined based on the presence of NOTCH3 mutation. Brain imaging measures of white matter hyperintensity, brain parenchymal fraction, white matter enlarged perivascular space volumes, clinical and cognitive measures as well as plasma proteomics were used in models. White matter enlarged perivascular space volumes were calculated via a novel, semiautomated pipeline, and levels of 7363 proteins were quantified in plasma using the SomaScan assay. The relationship of enlarged perivascular spaces with global burden of white matter hyperintensity, brain atrophy, functional status, neurocognitive measures and plasma proteins was modelled with linear regression models. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and control groups did not exhibit differences in mean enlarged perivascular space volumes. However, increased enlarged perivascular space volumes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy were associated with increased white matter hyperintensity volume (ß = 0.57, P = 0.05), Clinical Dementia Rating Sum-of-Boxes score (ß = 0.49, P = 0.04) and marginally with decreased brain parenchymal fraction (ß = -0.03, P = 0.10). In interaction term models, the interaction term between cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy disease status and enlarged perivascular space volume was associated with increased white matter hyperintensity volume (ß = 0.57, P = 0.02), Clinical Dementia Rating Sum-of-Boxes score (ß = 0.52, P = 0.02), Mini-Mental State Examination score (ß = -1.49, P = 0.03) and marginally with decreased brain parenchymal fraction (ß = -0.03, P = 0.07). Proteins positively associated with enlarged perivascular space volumes were found to be related to leukocyte migration and inflammation, while negatively associated proteins were related to lipid metabolism. Two central hub proteins were identified in protein networks associated with enlarged perivascular space volumes: CXC motif chemokine ligand 8/interleukin-8 and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. The levels of CXC motif chemokine ligand 8/interleukin-8 were also associated with increased white matter hyperintensity volume (ß = 42.86, P = 0.03), and levels of C-C motif chemokine ligand 2/monocyte chemoattractant protein 1 were further associated with decreased brain parenchymal fraction (ß = -0.0007, P < 0.01) and Mini-Mental State Examination score (ß = -0.02, P < 0.01) and increased Trail Making Test B completion time (ß = 0.76, P < 0.01). No proteins were associated with all three studied imaging measures of pathology (brain parenchymal fraction, enlarged perivascular spaces, white matter hyperintensity). Based on associations uncovered between enlarged perivascular space volumes and cognitive functions, imaging and plasma proteins, we conclude that white matter enlarged perivascular space volumes may capture pathologies contributing to chronic brain dysfunction and degeneration in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

10.
J Neurotrauma ; 41(11-12): 1353-1363, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38251868

RESUMO

Blood levels of glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) within 12h of suspected traumatic brain injury (TBI) have been approved by the Food and Drug administration to aid in determining the need for a brain computed tomography (CT) scan. The current study aimed to determine whether this context of use can be expanded beyond 12h post-TBI in patients presenting with Glasgow Coma Scale (GCS) 13-15. The prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled TBI participants aged ≥17 years who presented to a United States Level 1 trauma center and received a clinically indicated brain CT scan within 24h post-injury, a blood draw within 24h and at 14 days for biomarker analysis. Data from participants with emergency department arrival GCS 13-15 and biomarker values at days 1 and 14 were extracted for the primary analysis. A subgroup of hospitalized participants with serial biomarkers at days 1, 3, 5, and 14 were analyzed, including plasma GFAP and UCH-L1, and serum neuron-specific enolase (NSE) and S100 calcium-binding protein B (S100B). The primary analysis compared biomarker values dichotomized by head CT results (CT+/CT-). Area under receiver-operating characteristic curve (AUC) was used to determine diagnostic accuracy. The overall cohort included 1142 participants with initial GCS 13-15, with mean age 39.8 years, 65% male, and 73% Caucasian. The GFAP provided good discrimination in the overall cohort at days 1 (AUC = 0.82) and 14 (AUC = 0.72), and in the hospitalized subgroup at days 1 (AUC = 0.84), 3 (AUC = 0.88), 5 (AUC = 0.82), and 14 (AUC = 0.74). The UCH-L1, NSE, and S100B did not perform well (AUC = 0.51-0.57 across time points). This study demonstrates the utility of GFAP to aid in decision-making for diagnostic brain CT imaging beyond the 12h time frame in patients with TBI who have a GCS 13-15.


Assuntos
Biomarcadores , Lesões Encefálicas Traumáticas , Proteína Glial Fibrilar Ácida , Ubiquitina Tiolesterase , Humanos , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico , Proteína Glial Fibrilar Ácida/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Ubiquitina Tiolesterase/sangue , Estudos Prospectivos , Idoso , Tomografia Computadorizada por Raios X , Escala de Coma de Glasgow , Fatores de Tempo , Adulto Jovem
11.
Med Mycol ; 62(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38148116

RESUMO

Coccidioidomycosis is a potentially fatal fungal disease of humans and animals that follows inhalation of Coccidioides spp. arthroconidia in the environment. The disease in dogs resembles that in people, and because dogs may be at increased risk of exposure due to their proximity to the ground and digging behavior, they are valuable models for the disease in humans. Dogs have been sentinels for identification of new regions of endemicity in Washington and Texas. Canine serosurveillance has also been used to predict variables associated with environmental presence of Coccidioides spp. Expansion of the endemic region of coccidioidomycosis with climate change-along with predicted population increases and increased development in the southwest United States-may result in 45.4 million additional people at risk of infection by 2090. Here we provide an overview of the value of dogs as sentinels for the disease and encourage the routine reporting of coccidioidomycosis cases in dogs to public health agencies. We also highlight the value of dogs as naturally occurring models for studying novel treatment options and preventatives, such as a novel live avirulent coccidioidomycosis vaccine.


Assuntos
Coccidioidomicose , Doenças do Cão , Animais , Cães , Coccidioides , Coccidioidomicose/epidemiologia , Coccidioidomicose/veterinária , Coccidioidomicose/microbiologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Modelos Animais , Sudoeste dos Estados Unidos
12.
Sci Rep ; 13(1): 21200, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040784

RESUMO

Traumatic brain injury (TBI) affects how the brain functions in the short and long term. Resulting patient outcomes across physical, cognitive, and psychological domains are complex and often difficult to predict. Major challenges to developing personalized treatment for TBI include distilling large quantities of complex data and increasing the precision with which patient outcome prediction (prognoses) can be rendered. We developed and applied interpretable machine learning methods to TBI patient data. We show that complex data describing TBI patients' intake characteristics and outcome phenotypes can be distilled to smaller sets of clinically interpretable latent factors. We demonstrate that 19 clusters of TBI outcomes can be predicted from intake data, a ~ 6× improvement in precision over clinical standards. Finally, we show that 36% of the outcome variance across patients can be predicted. These results demonstrate the importance of interpretable machine learning applied to deeply characterized patients for data-driven distillation and precision prognosis.


Assuntos
Lesões Encefálicas Traumáticas , Destilação , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Prognóstico , Aprendizado de Máquina , Fenótipo
14.
Neurosurg Focus ; 55(4): E17, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778033

RESUMO

OBJECTIVE: Venous thromboembolism (VTE) following traumatic spinal cord injury (SCI) is a significant clinical concern. This study sought to determine the incidence of VTE and hemorrhagic complications among patients with SCI who received low-molecular-weight heparin (LMWH) within 24 hours of injury or surgery and identify variables that predict VTE using the prospective Transforming Research and Clinical Knowledge in SCI (TRACK-SCI) database. METHODS: The TRACK-SCI database was queried for individuals with traumatic SCI from 2015 to 2022. Primary outcomes of interest included rates of VTE (including deep vein thrombosis [DVT] and pulmonary embolism [PE]) and in-hospital hemorrhagic complications that occurred after LWMH administration. Secondary outcomes included intensive care unit and hospital length of stay, discharge location type, and in-hospital mortality. RESULTS: The study cohort consisted of 162 patients with SCI. Fifteen of the 162 patients withdrew from the study, leading to loss of data for certain variables for these patients. One hundred thirty patients (87.8%) underwent decompression and/or fusion surgery for SCI. DVT occurred in 11 (7.4%) of 148 patients, PE in 9 (6.1%) of 148, and any VTE in 18 (12.2%) of 148 patients. The analysis showed that admission lower-extremity motor score (p = 0.0408), injury at the thoracic level (p = 0.0086), admission American Spinal Injury Association grade (p = 0.0070), and younger age (p = 0.0372) were significantly associated with VTE. There were 3 instances of postoperative spine surgery-related bleeding (2.4%) in the 127 patients who had spine surgery with bleeding complication data available, with one requiring return to surgery (0.8%). Thirteen (8.8%) of 147 patients had a bleeding complication not related to spine surgery. There were 2 gastrointestinal bleeds associated with nasogastric tube placement, 3 cases of postoperative non-spine-related surgery bleeding, and 8 cases of other bleeding complications (5.4%) not related to any surgery. CONCLUSIONS: Initiation of LMWH within 24 hours was associated with a low rate of spine surgery-related bleeding. Bleeding complications unrelated to SCI surgery still occur with LMWH administration. Because neurosurgical intervention is typically the limiting factor in initializing chemical DVT prophylaxis, many of these bleeding complications would have likely occurred regardless of the protocol.


Assuntos
Embolia Pulmonar , Traumatismos da Medula Espinal , Traumatismos da Coluna Vertebral , Tromboembolia Venosa , Humanos , Heparina de Baixo Peso Molecular/efeitos adversos , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/prevenção & controle , Tromboembolia Venosa/epidemiologia , Estudos Prospectivos , Anticoagulantes/efeitos adversos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/cirurgia , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/epidemiologia , Embolia Pulmonar/prevenção & controle , Hemorragia Pós-Operatória/epidemiologia , Sistema de Registros , Heparina
15.
Evolution ; 77(11): 2492-2503, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37695267

RESUMO

Contrary to expectations regarding efficient predator education mediated by lack of ambiguity and enhanced prey recognition, aposematic signals often show considerable intraspecific variability. For example, some striped skunks (Mephitis mephitis) are almost entirely white, others have black-and-white stripes of equivalent thicknesses, yet others are mostly black. We tested the ecological correlates of this variation in patterning using 749 museum skins collected across North America. Skunks had longer white-black borders and more bilaterally symmetrical stripes in areas with a greater number of potential predator species, and this effect was more marked for mammalian than avian predators, the latter of which may be less deterred by noxious defenses. Skunks from locations with greater predator diversity were less variable in the extent of whiteness on their dorsa and less variable in the length of their white-black borders, suggesting strong selection from predators leads to greater conformity in stripe patterns, even at the same location, but weak selection from predators leads to relaxed selection on pattern conformity. Skunks exhibited greater areas of black pelage in areas of greater humidity conforming to Gloger's rule. Our results indicate that relaxed predation pressure is key to warning signal variation in this iconic species, whereas stronger pressure leads to signal conformity and stronger signals.


Assuntos
Mephitidae , Mariposas , Animais , Comportamento Predatório , Aves , Comportamento Social
16.
JAMA Netw Open ; 6(9): e2335804, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751204

RESUMO

Importance: One traumatic brain injury (TBI) increases the risk of subsequent TBIs. Research on longitudinal outcomes of civilian repetitive TBIs is limited. Objective: To investigate associations between sustaining 1 or more TBIs (ie, postindex TBIs) after study enrollment (ie, index TBIs) and multidimensional outcomes at 1 year and 3 to 7 years. Design, Setting, and Participants: This cohort study included participants presenting to emergency departments enrolled within 24 hours of TBI in the prospective, 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years, February 2014 to July 2020). Participants who completed outcome assessments at 1 year and 3 to 7 years were included. Data were analyzed from September 2022 to August 2023. Exposures: Postindex TBI(s). Main Outcomes and Measures: Demographic and clinical factors, prior TBI (ie, preindex TBI), and functional (Glasgow Outcome Scale-Extended [GOSE]), postconcussive (Rivermead Post-Concussion Symptoms Questionnaire [RPQ]), psychological distress (Brief Symptom Inventory-18 [BSI-18]), depressive (Patient Health Questionnaire-9 [PHQ-9]), posttraumatic stress disorder (PTSD; PTSD Checklist for DSM-5 [PCL-5]), and health-related quality-of-life (Quality of Life After Brain Injury-Overall Scale [QOLIBRI-OS]) outcomes were assessed. Adjusted mean differences (aMDs) and adjusted relative risks are reported with 95% CIs. Results: Of 2417 TRACK-TBI participants, 1572 completed the outcomes assessment at 1 year (1049 [66.7%] male; mean [SD] age, 41.6 [17.5] years) and 1084 completed the outcomes assessment at 3 to 7 years (714 [65.9%] male; mean [SD] age, 40.6 [17.0] years). At 1 year, a total of 60 participants (4%) were Asian, 255 (16%) were Black, 1213 (77%) were White, 39 (2%) were another race, and 5 (0.3%) had unknown race. At 3 to 7 years, 39 (4%) were Asian, 149 (14%) were Black, 868 (80%) were White, 26 (2%) had another race, and 2 (0.2%) had unknown race. A total of 50 (3.2%) and 132 (12.2%) reported 1 or more postindex TBIs at 1 year and 3 to 7 years, respectively. Risk factors for postindex TBI were psychiatric history, preindex TBI, and extracranial injury severity. At 1 year, compared with those without postindex TBI, participants with postindex TBI had worse functional recovery (GOSE score of 8: adjusted relative risk, 0.57; 95% CI, 0.34-0.96) and health-related quality of life (QOLIBRI-OS: aMD, -15.9; 95% CI, -22.6 to -9.1), and greater postconcussive symptoms (RPQ: aMD, 8.1; 95% CI, 4.2-11.9), psychological distress symptoms (BSI-18: aMD, 5.3; 95% CI, 2.1-8.6), depression symptoms (PHQ-9: aMD, 3.0; 95% CI, 1.5-4.4), and PTSD symptoms (PCL-5: aMD, 7.8; 95% CI, 3.2-12.4). At 3 to 7 years, these associations remained statistically significant. Multiple (2 or more) postindex TBIs were associated with poorer outcomes across all domains. Conclusions and Relevance: In this cohort study of patients with acute TBI, postindex TBI was associated with worse symptomatology across outcome domains at 1 year and 3 to 7 years postinjury, and there was a dose-dependent response with multiple postindex TBIs. These results underscore the critical need to provide TBI prevention, education, counseling, and follow-up care to at-risk patients.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Masculino , Adulto , Feminino , Estudos de Coortes , Estudos Prospectivos , Qualidade de Vida , Lesões Encefálicas Traumáticas/epidemiologia
17.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577570

RESUMO

Western blot is a popular biomolecular analysis method for measuring the relative quantities of independent proteins in complex biological samples. However, variability in quantitative western blot data analysis poses a challenge in designing reproducible experiments. The lack of rigorous quantitative approaches in current western blot statistical methodology may result in irreproducible inferences. Here we describe best practices for the design and analysis of western blot experiments, with examples and demonstrations of how different analytical approaches can lead to widely varying outcomes. To facilitate best practices, we have developed the blotRig tool for designing and analyzing western blot experiments to improve their rigor and reproducibility. The blotRig application includes functions for counterbalancing experimental design by lane position, batch management across gels, and analytics with covariates and random effects.

18.
Foot Ankle Orthop ; 8(3): 24730114231193419, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37566687

RESUMO

Nonsurgical management is almost always considered the first-line treatment for the vast majority of foot and ankle pathologies. Foot orthoses, shoe modifications, and therapeutic footwear are considered essential tools for successful conservative management of different foot and ankle disorders. Orthopedic foot and ankle surgeons should have a meticulous understanding of the lower extremity biomechanics as well as the pathoanatomy and the sequelae of diseases affecting the foot and/or ankle. This is essential to the understanding of the desired effects of the different inserts, orthotics, shoe modifications, or braces that may be prescribed for these conditions. In this article, we will summarize the orthoses used for treatment of the most commonly encountered foot and ankle pathologies, with the exclusion of treatment for the diabetic foot because of the unique requirements of that disease process.

19.
Emerg Infect Dis ; 29(8): 1566-1579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486179

RESUMO

More than 60 zoonoses are linked to small mammals, including some of the most devastating pathogens in human history. Millions of museum-archived tissues are available to understand natural history of those pathogens. Our goal was to maximize the value of museum collections for pathogen-based research by using targeted sequence capture. We generated a probe panel that includes 39,916 80-bp RNA probes targeting 32 pathogen groups, including bacteria, helminths, fungi, and protozoans. Laboratory-generated, mock-control samples showed that we are capable of enriching targeted loci from pathogen DNA 2,882‒6,746-fold. We identified bacterial species in museum-archived samples, including Bartonella, a known human zoonosis. These results showed that probe-based enrichment of pathogens is a highly customizable and efficient method for identifying pathogens from museum-archived tissues.


Assuntos
DNA , Zoonoses , Animais , Humanos , DNA/genética , Zoonoses/microbiologia , Fungos , Bactérias/genética , Mamíferos
20.
Neurotherapeutics ; 20(6): 1433-1445, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525025

RESUMO

The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogeneity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are establishing the core framework needed for successfully addressing the translatability crisis of TBI.


Assuntos
Pesquisa Biomédica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Reprodutibilidade dos Testes , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA