Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855965

RESUMO

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.

2.
New Phytol ; 242(4): 1614-1629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594212

RESUMO

Species-specific differences in nutrient acquisition strategies allow for complementary use of resources among plants in mixtures, which may be further shaped by mycorrhizal associations. However, empirical evidence of this potential role of mycorrhizae is scarce, particularly for tree communities. We investigated the impact of tree species richness and mycorrhizal types, arbuscular mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on above- and belowground carbon (C), nitrogen (N), and phosphorus (P) dynamics. Soil and soil microbial biomass elemental dynamics showed weak responses to tree species richness and none to mycorrhizal type. However, foliar elemental concentrations, stoichiometry, and pools were significantly affected by both treatments. Tree species richness increased foliar C and P pools but not N pools. Additive partitioning analyses showed that net biodiversity effects of foliar C, N, P pools in EM tree communities were driven by selection effects, but in mixtures of both mycorrhizal types by complementarity effects. Furthermore, increased tree species richness reduced soil nitrate availability, over 2 yr. Our results indicate that positive effects of tree diversity on aboveground nutrient storage are mediated by complementary mycorrhizal strategies and highlight the importance of using mixtures composed of tree species with different types of mycorrhizae to achieve more multifunctional afforestation.


Assuntos
Biodiversidade , Carbono , Micorrizas , Nitrogênio , Fósforo , Folhas de Planta , Solo , Árvores , Micorrizas/fisiologia , Árvores/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Fósforo/metabolismo , Solo/química , Nitrogênio/metabolismo , Carbono/metabolismo , Biomassa , Microbiologia do Solo , Elementos Químicos , Especificidade da Espécie
3.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453933

RESUMO

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Assuntos
Biodiversidade , Ecossistema , Plantas , Biomassa , Florestas , Pradaria
4.
iScience ; 27(3): 109036, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361612

RESUMO

Among the most important impacts of biological invasions on biodiversity is biotic homogenization, which may further compromise key ecosystem processes. However, the extent to which they homogenize functional diversity and shift dominant ecological strategies of invaded communities remains uncertain. Here, we investigated changes in plant communities in a northern North American forest in response to invasive earthworms, by examining the taxonomic and functional diversity of the plant community and soil ecosystem functions. We found that although plant taxonomic diversity did not change in response to invasive earthworms, they modified the dominance structure of plant functional groups. Invasive earthworms promoted the dominance of fast-growing plants at the expense of slow-growing ones. Moreover, earthworms decreased plant functional diversity, which coincided with changes in abiotic and biotic soil properties. Our study reveals that invasive earthworms erode multiple biodiversity facets of invaded forests, with potential cascading effects on ecosystem functioning.

5.
iScience ; 27(2): 108889, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322986

RESUMO

Invasive earthworms colonize ecosystems around the globe. Compared to other species' invasions, earthworm invasions have received little attention. Previous studies indicated their tremendous effects on resident soil biota representing a major part of the terrestrial biodiversity. We investigated effects of earthworm invasion on soil microbial communities in three forests in North America by conducting DNA sequencing of soil bacteria, fungi, and protists in two soil depths. Our study shows that microbial diversity was lower in highly invaded forest areas. While bacterial diversity was strongly affected compared to fungi and protists, fungal community composition and family dominance were strongly affected compared to bacteria and protists. We found most species specialized on invasion in fungi, mainly represented by saprotrophs. Comparably, few protist species, mostly bacterivorous, were specialized on invasion. As one of the first observational studies, we investigated earthworm invasion on three kingdoms showing distinct taxa- and trophic level-specific responses to earthworm invasion.

6.
Sci Data ; 11(1): 22, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172139

RESUMO

Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.


Assuntos
Artrópodes , Animais , Ecossistema , Florestas , Estações do Ano , Solo
7.
Sci Adv ; 9(40): eadi2362, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801499

RESUMO

Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.


Assuntos
Florestas , Árvores , Biodiversidade , Madeira , Sequestro de Carbono
8.
Ecol Evol ; 13(4): e10002, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091560

RESUMO

While mycorrhization rates have been studied in different contexts, not much is known about their temporal patterns across seasons. Here, we asked how mycorrhization rates of 10 deciduous trees assessed by microscopy changed from winter to spring to early summer. We made use of a tree diversity experiment on nutrient-rich soil (former farmland) in Central Germany. In the experiment, saplings of host species with a preference for either arbuscular mycorrhiza (AM) or ectomycorrhiza (EM) were planted in monocultures, two-species, and four-species mixtures. In addition, mixtures were composed of tree species of only one mycorrhizal type or by AM/EM trees. For almost all species, with the exception of Aesculus hippocastanum and Acer pseudoplatanus (only AM), dual mycorrhization with both types (AM and EM) was found at every sampling time (December, March, and May), although the expected preferences for certain mycorrhizal types were confirmed. The sampling date had a significant influence on mycorrhization rates of both EM and AM tree species. Frequencies of EM and AM were lowest in May, but there were no differences between December and March. The causes of this seasonal variation may be associated with climate-induced differences in carbon allocation to mycorrhizal tree roots in the temperate climate. Within individual trees, mycorrhization rates by AM and EM fungi were not correlated over time, pointing to asynchronous variation between both types and to independent drivers for AM and EM mycorrhization. At the community level, mycorrhiza frequency of either of the two types became more asynchronous from two-species to four-species mixtures. Thus, increased community asynchrony in mycorrhization could be another important mechanism in biodiversity-ecosystem functioning relationships.

9.
Nat Commun ; 14(1): 674, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750574

RESUMO

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.


Assuntos
Artrópodes , Ecossistema , Humanos , Animais , Biodiversidade , Tundra , Solo
10.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36302436

RESUMO

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Assuntos
Ecossistema , Árvores , Árvores/química , Folhas de Planta , Florestas , Chá , Biodiversidade , Solo/química
11.
Sci Total Environ ; 863: 160775, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36509268

RESUMO

Elevated atmospheric CO2 concentrations [CO2] potentially alter carbon (C) and phosphorus (P) cycles in terrestrial ecosystems. Although numerous field experiments and a few meta-analyses have been conducted, it is still largely unclear how the P cycle affects plant biomass responses under elevated [CO2] globally. Here, we conducted a global synthesis by analyzing 111 studies on the responses of above- and belowground P cycling to elevated [CO2], to examine how changes in the P cycle affect the plant biomass response to elevated [CO2]. Our results show that elevated [CO2] significantly increased plant aboveground biomass (+13 %), stem biomass (+4 %), leaf biomass (+11 %), belowground biomass (+12 %), and the root: shoot ratio (+7 %). Effects of elevated [CO2] on aboveground biomass, belowground biomass, and root: shoot ratio were best explained by plant P uptake. In addition, elevated [CO2]-induced changes in the aboveground P pool, leaf P pool, and leaf P concentration were modulated by ecological drivers, such as ΔCO2, experimental duration, and aridity index. Our findings highlight the importance of plant P uptake for both above- and belowground plant biomass responses under elevated [CO2], which should be considered in future biosphere models to improve predictions of terrestrial carbon-climate feedbacks.


Assuntos
Biomassa , Dióxido de Carbono , Plantas , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Fósforo/metabolismo , Plantas/metabolismo , Solo/química
12.
Ecology ; 104(2): e3896, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36215064

RESUMO

Tree species are known to predominantly interact either with arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. However, there is a knowledge gap regarding whether these mycorrhizae differently influence biodiversity-ecosystem functioning (BEF) relationships and whether a combination of both can increase community productivity. In 2015, we established a tree-diversity experiment by growing tree communities with varying species richness levels (one, two, or four species) and either with AM or EM tree species or a combination of both. We investigated basal area and annual basal area increment from 2015 to 2020 as proxies for community productivity. We found significant positive relationships between tree species richness and community productivity, which strengthened over time. Further, AM and EM tree species differently influenced productivity; however, there was no overyielding when AM and EM trees grew together. EM tree communities were characterized by low productivity in the beginning but an increase of increment over time and showed overall strong biodiversity effects. For AM tree communities the opposite was true. Although young trees did not benefit from the presence of the other mycorrhizal type, dissimilar mechanisms underlying BEF relationships in AM and EM trees indicate that maximizing tree and mycorrhizal diversity may increase ecosystem functioning in the long run.


Assuntos
Micorrizas , Árvores , Árvores/microbiologia , Ecossistema , Florestas , Biodiversidade , Microbiologia do Solo , Solo
13.
Biol Lett ; 18(3): 20210636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35350876

RESUMO

Declining arthropod communities have recently gained a lot of attention, with climate and land-use change among the most frequently discussed drivers. Here, we focus on a seemingly underrepresented driver of arthropod community decline: biological invasions. For approximately 12 000 years, earthworms have been absent from wide parts of northern North America, but they have been re-introduced with dramatic consequences. Most studies investigating earthworm-invasion impacts focus on the belowground world, resulting in limited knowledge on aboveground-community changes. We present observational data on earthworm, plant and aboveground arthropod communities in 60 plots, distributed across areas with increasing invasion status (low, medium and high) in a Canadian forest. We analysed how earthworm-invasion status and biomass impact aboveground arthropod community abundance, biomass and species richness, and how earthworm impacts cascade across trophic levels. We sampled approximately 13 000 arthropods, dominated by Hemiptera, Diptera, Araneae, Thysanoptera and Hymenoptera. Total arthropod abundance, biomass and species richness declined significantly from areas of low to those with high invasion status, with reductions of 61, 27 and 18%, respectively. Structural equation models suggest that earthworms directly and indirectly impact arthropods across trophic levels. We show that earthworm invasion can alter aboveground multi-trophic arthropod communities and suggest that belowground invasions might be underappreciated drivers of aboveground arthropod decline.


Assuntos
Artrópodes , Oligoquetos , Animais , Canadá , Florestas , Plantas
14.
Basic Appl Ecol ; 55: 110-123, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34493930

RESUMO

Research aimed at understanding the mechanisms underlying the relationship between tree diversity and antagonist infestation is often neglecting resource-use complementarity among plant species. We investigated the effects of tree species identity, species richness, and mycorrhizal type on leaf herbivory and pathogen infestation. We used a tree sapling experiment manipulating the two most common mycorrhizal types, arbuscular mycorrhiza and ectomycorrhiza, via respective tree species in monocultures and two-species mixtures. We visually assessed leaf herbivory and pathogen infestation rates, and measured concentrations of a suite of plant metabolites (amino acids, sugars, and phenolics), leaf elemental concentrations (carbon, nitrogen, and phosphorus), and tree biomass. Tree species and mycorrhizal richness had no significant effect on herbivory and pathogen infestation, whereas species identity and mycorrhizal type had. Damage rates were higher in arbuscular mycorrhizal (AM) than in ectomycorrhizal (EM) trees. Our structural equation model (SEM) indicated that elemental, but not metabolite concentrations, determined herbivory and pathogen infestation, suggesting that the investigated chemical defence strategies may not have been involved in the effects found in our study with tree saplings. Other chemical and physical defence strategies as well as species identity as its determinant may have played a more crucial role in the studied saplings. Furthermore, the SEM indicated a direct positive effect of AM trees on herbivory rates, suggesting that other dominant mechanisms, not considered here, were involved as well. We found differences in the attribution of elemental concentrations between the two rates. This points to the fact that herbivory and pathogen infestation are driven by distinct mechanisms. Our study highlights the importance of biotic contexts for understanding the mechanisms underlying the effects of biodiversity on tree-antagonist interactions.

15.
Ecol Evol ; 11(10): 5424-5440, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026018

RESUMO

Recent studies found that the majority of shrub and tree species are associated with both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. However, our knowledge on how different mycorrhizal types interact with each other is still limited. We asked whether the combination of hosts with a preferred association with either AM or EM fungi increases the host tree roots' mycorrhization rate and affects AM and EM fungal richness and community composition.We established a tree diversity experiment, where five tree species of each of the two mycorrhiza types were planted in monocultures, two-species and four-species mixtures. We applied morphological assessment to estimate mycorrhization rates and next-generation molecular sequencing to quantify mycobiont richness.Both the morphological and molecular assessment revealed dual-mycorrhizal colonization in 79% and 100% of the samples, respectively. OTU community composition strongly differed between AM and EM trees. While host tree species richness did not affect mycorrhization rates, we observed significant effects of mixing AM- and EM-associated hosts in AM mycorrhization rate. Glomeromycota richness was larger in monotypic AM tree combinations than in AM-EM mixtures, pointing to a dilution or suppression effect of AM by EM trees. We found a strong match between morphological quantification of AM mycorrhization rate and Glomeromycota richness. Synthesis. We provide evidence that the combination of hosts differing in their preferred mycorrhiza association affects the host's fungal community composition, thus revealing important biotic interactions among trees and their associated fungi.

16.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
17.
Front Plant Sci ; 12: 627573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796124

RESUMO

As ecosystem engineers, invasive earthworms are one of the main drivers of plant community changes in North American forests previously devoid of earthworms. One explanation for these community changes is the effects of earthworms on the reproduction, recruitment, and development of plant species. However, few studies have investigated functional trait responses of native plants to earthworm invasion to explain the mechanisms underlying community changes. In a mesocosm (Ecotron) experiment, we set up a plant community composed of two herb and two grass species commonly found in northern North American forests under two earthworm treatments (presence vs. absence). We measured earthworm effects on above- and belowground plant biomass and functional traits after 3 months of experiment. Our results showed that earthworm presence did not significantly affect plant community biomass and cover. Furthermore, only four out of the fifteen above- and belowground traits measured were affected by earthworm presence. While some traits, such as the production of ramets, the carbon and nitrogen content of leaves, responded similarly between and within functional groups in the presence or absence of earthworms, we observed opposite responses for other traits, such as height, specific leaf area, and root length within some functional groups in the presence of earthworms. Plant trait responses were thus species-specific, although the two grass species showed a more pronounced response to earthworm presence with changes in their leaf traits than herb species. Overall, earthworms affected some functional traits related to resource uptake abilities of plants and thus could change plant competition outcomes over time, which could be an explanation of plant community changes observed in invaded ecosystems.

18.
Tree Physiol ; 41(11): 2096-2108, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33929538

RESUMO

Mycorrhizal fungi play an important role for the nitrogen (N) supply of trees. The influence of different mycorrhizal types on N acquisition in tree-tree interactions is, however, not well understood, particularly with regard to the competition for growth-limiting N. We studied the effect of competition between temperate forest tree species on their inorganic and organic N acquisition in relation to their mycorrhizal type (i.e., arbuscular mycorrhiza or ectomycorrhiza). In a field experiment, we quantified net N uptake capacity from inorganic and organic N sources using 15N/13C stable isotopes for arbuscular mycorrhizal tree species (i.e., Acer pseudoplatanus L., Fraxinus excelsior L., and Prunus avium L.) as well as ectomycorrhizal tree species (i.e., Carpinus betulus L., Fagus sylvatica L., and Tilia platyphyllos Scop.). All species were grown in intra- and interspecific competition (i.e., monoculture or mixture). Our results showed that N sources were not used complementarily depending on a species' mycorrhizal association, but their uptake rather depended on the competitor, indicating species-specific effects. Generally, ammonium was preferred over glutamine and glutamine over nitrate. In conclusion, our findings suggest that the inorganic and organic N acquisition of the studied temperate tree species is less regulated by mycorrhizal association but rather by the availability of specific N sources in the soil as well as the competitive environment of different tree species.


Assuntos
Fagus , Micorrizas , Florestas , Nitrogênio , Solo , Árvores/microbiologia
19.
Funct Ecol ; 35(1): 67-81, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33746332

RESUMO

Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch Betula pendula in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory.We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased.Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments.Herbivory was negatively correlated with leaf chemical defences, particularly when birch was associated with closely related species. The interactive effect of tree diversity and climate on herbivory was partially mediated by changes in leaf chemical defences.Our findings confirm that tree species diversity can modify the leaf chemistry of a focal species, hence its quality for herbivores. They further stress that such neighbour-induced changes are dependent on climate and that tree diversity effects on insect herbivory are partially mediated by these neighbour-induced changes in chemical defences.

20.
J Ecol ; 109(2): 763-775, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664527

RESUMO

Recent research shows that earthworms can alter defense traits of plants against herbivores and pathogens by affecting soil biochemistry. Yet, the effects of invasive earthworms on defense traits of native plants from previously earthworm-free ecosystems as well as the consequences for multitrophic interactions are virtually unknown.Here we use a combination of an observational study and a complementary experimental study to investigate the effects of invasive earthworms on leaf defense traits, herbivore damage and pathogen infection in two poplar tree species (Populus balsamifera and Populus tremuloides) native to North American boreal forests.Our observational study showed that earthworm invasion was associated with enhanced leaf herbivory (by leaf-chewing insects) in saplings of both tree species. However, we only detected significant shifts in the concentration of chemical defense compounds in response to earthworm invasion for P. balsamifera. Specifically, leaf phenolic concentrations, including salicinoids and catechin, were lower in P. balsamifera from earthworm-invaded sites.Our experimental study confirmed an earthworm-induced reduction in leaf defense levels in P. balsamifera for one of the defense compounds, tremulacin. The experimental study additionally showed that invasive earthworms reduced leaf dry matter content, potentially increasing leaf palatability, and enhanced susceptibility of trees to infection by a fungal pathogen, but not to aphid infestation, in the same tree species. Synthesis. Our results show that invasive earthworms can decrease the concentrations of some chemical defense compounds in P. balsamifera, which could make them susceptible to leaf-chewing insects. Such potential impacts of invasive earthworms are likely to have implications for tree survival and competition, native tree biodiversity and ecosystem functioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA