RESUMO
Glaesserella parasuis (Gp) is the etiological agent of Glässer's disease (GD), which causes important economic losses for the pig intensive production worldwide. This organism uses a smart protein-based receptor to acquire specifically iron from the porcine transferrin. This surface receptor consists of transferrin-binding protein A (TbpA) and transferrin-binding protein B (TbpB). TbpB has been considered the most promising antigen to formulate a based-protein vaccine with broad-spectrum of protection against GD. The purpose of our study was to determine the capsular diversity of Gp clinical isolates collected in different Spanish regions between 2018 and 2021. A total of 68 Gp isolates were recovered from porcine respiratory or systemic samples. A species-specific PCR based on tbpA gene, followed by multiplex PCR for typing Gp isolates were performed. Serovars 5, 10, 2, 4 and 1 were the most prevalent and involved almost 84% of isolates. TbpB amino acid sequences from 59 of these isolates were analyzed, and a total of ten clades could be established. All of them showed a wide diversity with respect to capsular type, anatomical isolation site and geographical origin, with minor exceptions. Regardless of the serovars, the in silico analysis of TbpB sequences revealed that a vaccine based on a TbpB recombinant protein could potentially prevent Glässer's disease outbreaks in Spain.