Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hear Res ; 444: 108969, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350175

RESUMO

Presbycusis or age-related hearing loss (ARHL) is one of the most prevalent chronic health problems facing aging populations. Along the auditory pathway, the stations involved in transmission and processing, function as a system of interconnected feedback loops. Regulating hierarchically auditory processing, auditory cortex (AC) neuromodulation can, accordingly, activate both peripheral and central plasticity after hearing loss. However, previous ARHL-prevention interventions have mainly focused on preserving the structural and functional integrity of the inner ear, overlooking the central auditory system. In this study, using an animal model of spontaneous ARHL, we aim at assessing the effects of multisession epidural direct current stimulation of the AC through stereotaxic implantation of a 1-mm silver ball anode in Wistar rats. Consisting of 7 sessions (0.1 mA/10 min), on alternate days, in awake animals, our stimulation protocol was applied at the onset of hearing loss (threshold shift detection at 16 months). Click- and pure-tone auditory brainstem responses (ABRs) were analyzed in two animal groups, namely electrically stimulated (ES) and non-stimulated (NES) sham controls, comparing recordings at 18 months of age. At 18 months, NES animals showed significantly increased threshold shifts, decreased wave amplitudes, and increased wave latencies after click and tonal ABRs, reflecting a significant, spontaneous ARHL evolution. Conversely, in ES animals, no significant differences were detected in any of these parameters when comparing 16 and 18 months ABRs, indicating a delay in ARHL progression. Electrode placement in the auditory cortex was accurate, and the stimulation did not cause significant damage, as shown by the limited presence of superficial reactive microglial cells after IBA1 immunostaining. In conclusion, multisession DC stimulation of the AC has a protective effect on auditory function, delaying the progression of presbycusis.


Assuntos
Córtex Auditivo , Presbiacusia , Ratos , Animais , Presbiacusia/prevenção & controle , Ratos Wistar , Envelhecimento/fisiologia , Audição , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo/fisiologia
2.
Front Neuroanat ; 17: 1128193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992795

RESUMO

The analysis of the topography of brain neuromodulation following transcranial alternating current (AC) stimulation is relevant for defining strategies directed to specific nuclei stimulation in patients. Among the different procedures of AC stimulation, temporal interference (tTIS) is a novel method for non-invasive neuromodulation of specific deep brain targets. However, little information is currently available about its tissue effects and its activation topography in in vivo animal models. After a single session (30 min, 0.12 mA) of transcranial alternate current (2,000 Hz; ES/AC group) or tTIS (2,000/2,010 Hz; Es/tTIS group) stimulation, rat brains were explored by whole-brain mapping analysis of c-Fos immunostained serial sections. For this analysis, we used two mapping methods, namely density-to-color processed channels (independent component analysis (ICA) and graphical representation (MATLAB) of morphometrical and densitometrical values obtained by density threshold segmentation. In addition, to assess tissue effects, alternate serial sections were stained for glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), and Nissl. AC stimulation induced a mild superficial increase in c-Fos immunoreactivity. However, tTIS stimulation globally decreased the number of c-Fos-positive neurons and increased blood brain barrier cell immunoreactivity. tTIS also had a stronger effect around the electrode placement area and preserved neuronal activation better in restricted areas of the deep brain (directional stimulation). The enhanced activation of intramural blood vessels' cells and perivascular astrocytes suggests that low-frequency interference (10 Hz) may also have a trophic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA