Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Mol Biol ; 435(24): 168321, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865285

RESUMO

Ribosomal proteins have important roles in maintaining the structure and function of mature ribosomes, but they also drive crucial rearrangement reactions during ribosome biogenesis. The contribution of most, but not all, ribosomal proteins to ribosome synthesis has been previously analyzed in the yeast Saccharomyces cerevisiae. Herein, we characterize the role of yeast eL15 during 60S ribosomal subunit formation. In vivo depletion of eL15 results in a shortage of 60S subunits and the appearance of half-mer polysomes. This is likely due to defective processing of the 27SA3 to the 27SBS pre-rRNA and impaired subsequent processing of both forms of 27SB pre-rRNAs to mature 25S and 5.8S rRNAs. Indeed, eL15 depletion leads to the efficient turnover of the de novo formed 27S pre-rRNAs. Additionally, depletion of eL15 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we have analyzed the impact of depleting either eL15 or eL36 on the composition of early pre-60S particles, thereby revealing that the depletion of eL15 or eL36 not only affects each other's assembly into pre-60S particles but also that of neighboring ribosomal proteins, including eL8. These intermediates also lack most ribosome assembly factors required for 27SA3 and 27SB pre-rRNA processing, named A3- and B-factors, respectively. Importantly, our results recapitulate previous ones obtained upon eL8 depletion. We conclude that assembly of eL15, together with that of eL8 and eL36, is a prerequisite to shape domain I of 5.8S/25S rRNA within early pre-60S particles, through their binding to this rRNA domain and the recruitment of specific groups of assembly factors.


Assuntos
Subunidades Ribossômicas Maiores de Eucariotos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771144

RESUMO

The structural composition of the cell wall of grape skins is related to the cell wall integrity and subsequent extraction of the different compounds that are contained inside vacuoles and also the cell wall breakdown products. Different reports have established that methyl jasmonate (MeJ) produces changes in the composition of the grape skin cell wall. The use of elicitors to promote the production of secondary metabolites in grapes has been studied in several reports; however, its study linked to nanotechnology is less developed. These facts led us to study the effect of methyl jasmonate (MeJ) and nanoparticles doped with MeJ (nano-MeJ) on the cell walls of Monastrell grapes during three seasons. Both treatments tended to increase cell wall material (CWM) and caused changes in different components of the skin cell walls. In 2019 and 2021, proteins were enlarged in both MeJ and nano-MeJ-treated grapes. A general decrease in total phenolic compounds was detected with both treatments, in addition to an increment in uronic acids when the grapes were well ripened. MeJ and nano-MeJ produced a diminution in the amount of cellulose in contrast to an increase in hemicellulose. It should be noted that the effects with nano-MeJ treatment occurred at a dose 10 times lower than with MeJ treatment.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Acetatos/química , Parede Celular/química , Frutas/química
3.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674792

RESUMO

Alzheimer's disease (AD) is known to be caused by amyloid ß-peptide (Aß) misfolded into ß-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aß toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aß1-42. We identified 81 mammalian orthologue genes that enhance Aß1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aß oligomers (oAß). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAß1-42, whereas SURF4 overexpression induced Aß1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aß toxicity and showed that SURF4 contributes to oAß1-42 neurotoxicity by decreasing SOCE activity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/química , Cálcio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Morte Celular , Canais de Cálcio/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Rev Esp Enferm Dig ; 115(7): 398-399, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36353951

RESUMO

Sarcoidosis is a multisystem chronic inflammatory disease of unknown etiology, characterized by non-caseating granulomas. Sarcoidosis has the potential to involve every tissue in the body, which mainly affect the lymphatic system and lungs; gastrointestinal system, and particularly the colon, is an extremely rare location. We report the case of a 64-year-old male with history of pulmonary and cutaneous sarcoidosis diagnosed with neoplasm in the hepatic flexure of the colon and a polyp with high-grade dysplasia in the transverse colon by colonoscopy after a positive fecal occult blood test. The case was presented to a multidisciplinary committee and it was decided to perform a total laparoscopic colectomy and ileorectal anastomosis with histopathological evidence of infiltrating adenocarcinoma and intestinal sarcoidosis with non-caseating granulomas in the appendix, terminal ileum, colon and locoregional lymph nodes. The relationship between colon cancer and sarcoidosis is controversial, with studies showing a possible increased risk of cancer in patients with sarcoidosis, relating it to the chronic proinflammatory state of the disease. In these cases, lymph node involvement is especially important when assessing tumor extension studies, and may lead to changes in staging and, as a consequence, in the therapeutic approach.


Assuntos
Adenocarcinoma , Colo Transverso , Neoplasias do Colo , Sarcoidose , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias do Colo/complicações , Neoplasias do Colo/cirurgia , Neoplasias do Colo/patologia , Adenocarcinoma/complicações , Adenocarcinoma/cirurgia , Sarcoidose/complicações , Sarcoidose/diagnóstico , Granuloma
6.
J Sci Food Agric ; 103(1): 143-151, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833383

RESUMO

BACKGROUND: Proanthocyanidins (PAs) are phenolic compounds present in skins and seeds of wine grapes and have great implications for plant physiology and wine quality. There are several strategies to increase PA concentration, such as application of elicitors methyl jasmonate (MeJ) and benzothiadiazole (BTH), compounds that can stimulate defence responses like phenolic compound biosynthesis in wine grapes, which have been applied mainly at veraison (beginning of ripening). We recently evaluated the application of MeJ and BTH on Vitis vinifera cv. Monastrell grapes during veraison and mid-ripening (3 weeks after veraison). Grapes treated at mid-ripening showed higher anthocyanin concentrations than those at veraison. In this trial, over two seasons, we evaluated whether time of application (veraison or mid-ripening) of MeJ and BTH on 'Monastrell' grapes is a determining factor in the biosynthesis and composition of PAs in grapes and their subsequent release into wines. RESULTS: Application of elicitors at different ripening times produced significant differences in the PAs of 'Monastrell' grapes, since those treated at mid-ripening recorded a higher PAs concentration in skin and seeds, and then in the wines produced, compared to grapes treated at veraison. CONCLUSION: Results suggest that despite different environmental conditions endured in each of the two seasons evaluated, application of elicitors at mid-ripening of Monastrell grapes could be used to harvest grapes with higher PA concentration, increasing the functional value of the wines, without altering their organoleptic quality. © 2022 Society of Chemical Industry.


Assuntos
Proantocianidinas , Vitis , Vinho , Vitis/química , Proantocianidinas/análise , Frutas/química , Oxilipinas/química , Vinho/análise , Antocianinas/análise , Fenóis/análise
7.
F1000Res ; 11: 726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128552

RESUMO

Background: There is a significant gap in employment between people with and without disabilities, despite the importance of work in achieving their independence, autonomy, and integration into society. There are several reasons that cause this gap to exist, such as: people with disabilities feel less prepared, there is a stigma or discrimination to hire people with disabilities and the incompatibility of schedules due to medical issues, among others. That is why entrepreneurship emerges as a good option for the integration of people with disabilities in our society, improves their confidence and promotes some of the Sustainable Development Goals set out in the 2030 Agenda. According to existing literature, people with disabilities have certain virtues such as resilience and motivation that favor entrepreneurship. Thus, the purpose of this study is to provide new insights into the variables that determine the entrepreneurial intention of people with disabilities. Methods: In order to respond to this objective, an online questionnaire was given to people with disabilities between the ages of 16 and 65 years, residing in diverse regions of Spain. To analyze the results, this study uses Partial Least Squares-Structural Equation Modeling (PLS-SEM) in a sample of 235 people with disabilities in Spain using as a framework Krueger´s improved model, adding resilience as a new variable. Results: The results reflect the importance of resilience, the subjective norm, and perceived collective efficacy in the entrepreneurial processes of people with disabilities. Conclusions: This study contributes to the underdeveloped literature on entrepreneurship in people with disabilities; it provides insights that can have a practical effect on the reduction of the inequality gap between people with and without disabilities making recommendations to clinicians, vocational psychologists, and policymakers; also, this study would advance the achievement of Sustainable Development Goals 8 and 10.


Assuntos
Pessoas com Deficiência , Empreendedorismo , Intenção , Resiliência Psicológica , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Motivação , Desenvolvimento Sustentável , Adulto Jovem
8.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566227

RESUMO

The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Acetatos , Ciclopentanos , Frutas/química , Hexanóis/metabolismo , Odorantes/análise , Oxilipinas/metabolismo , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise
9.
Plants (Basel) ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631788

RESUMO

One alternative for adapting viticulture to high temperatures and the scarcity of water is the development of new varieties adapted to such conditions. This work describes six new genotypes, derived from "Monastrell" × "Cabernet Sauvignon" (MC16, MC19, MC72, MC80) and "Monastrell" × "Syrah" (MS104, MS49) crosses, grown under deficit irrigation and rainfed conditions in a semi-arid wine-producing area (Murcia, southeastern Spain). The effect of genotype, year, and irrigation treatment on the phenological, productiveness, morphological, and grape quality data was evaluated. The study material was obtained and selected as part of a breeding program run by the Instituto Murciano de Investigación y Desarollo Agrario y Medioambiental (IMIDA). The results obtained show that under rainfed conditions, the values for productive variables decreased, while those referring to the phenolic content increased. Notable variation in the parameters evaluated was also seen for the different genotypes studied. The behavior of the genotypes MC80 and MS104 under rainfed conditions was noteworthy. In addition to maintaining very adequate yields, phenolic contents, must pH, and total acidity values, MC80 fell into the best 'phenolic quality group' and MS104 returned a low º°Baumé value, ideal for the production of low-alcohol-content wines. These genotypes could favor the development of sustainable quality viticulture in dry and hot areas.

10.
Nucleic Acids Res ; 50(11): 6453-6473, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35639884

RESUMO

During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Peptídeos/metabolismo , Dobramento de Proteína , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
RNA Biol ; 19(1): 560-574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35438042

RESUMO

The small ribosomal subunit protein Rps15/uS19 is involved in early nucleolar ribosome biogenesis and subsequent nuclear export of pre-40S particles to the cytoplasm. In addition, the C-terminal tail of Rps15 was suggested to play a role in mature ribosomes, namely during translation elongation. Here, we show that Rps15 not only functions in nucleolar ribosome assembly but also in cytoplasmic pre-40S maturation, which is indicated by a strong genetic interaction between Rps15 and the 40S assembly factor Ltv1. Specifically, mutations either in the globular or C-terminal domain of Rps15 when combined with the non-essential ltv1 null allele are lethal or display a strong growth defect. However, not only rps15 ltv1 double mutants but also single rps15 C-terminal deletion mutants exhibit an accumulation of the 20S pre-rRNA in the cytoplasm, indicative of a cytoplasmic pre-40S maturation defect. Since in pre-40S particles, the C-terminal tail of Rps15 is positioned between assembly factors Rio2 and Tsr1, we further tested whether Tsr1 is genetically linked to Rps15, which indeed could be demonstrated. Thus, the integrity of the Rps15 C-terminal tail plays an important role during late pre-40S maturation, perhaps in a quality control step to ensure that only 40S ribosomal subunits with functional Rps15 C-terminal tail can efficiently enter translation. As mutations in the C-terminal tail of human RPS15 have been observed in connection with chronic lymphocytic leukaemia, it is possible that apart from defects in translation, an impaired late pre-40S maturation step in the cytoplasm could also be a reason for this disease.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Humanos , Biossíntese de Proteínas , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827629

RESUMO

Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Nanopartículas/química , Nitrogênio/análise , Oxilipinas/farmacologia , Vitis/química , Vinho/análise , Aminoácidos/análise , Compostos de Amônio/análise , Análise Discriminante , Estações do Ano
13.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638717

RESUMO

MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.


Assuntos
Fibrilação Atrial/sangue , Sinalização do Cálcio , Comunicação Celular , MicroRNA Circulante/sangue , Insuficiência Cardíaca/sangue , MicroRNAs/sangue , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/etiologia , Linhagem Celular , Feminino , Insuficiência Cardíaca/complicações , Humanos , Masculino
14.
Biomolecules ; 11(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356637

RESUMO

Mitochondria play key roles in ATP supply, calcium homeostasis, redox balance control and apoptosis, which in neurons are fundamental for neurotransmission and to allow synaptic plasticity. Their functional integrity is maintained by mitostasis, a process that involves mitochondrial transport, anchoring, fusion and fission processes regulated by different signaling pathways but mainly by the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α also favors Ca2+ homeostasis, reduces oxidative stress, modulates inflammatory processes and mobilizes mitochondria to where they are needed. To achieve their functions, mitochondria are tightly connected to the endoplasmic reticulum (ER) through specialized structures of the ER termed mitochondria-associated membranes (MAMs), which facilitate the communication between these two organelles mainly to aim Ca2+ buffering. Alterations in mitochondrial activity enhance reactive oxygen species (ROS) production, disturbing the physiological metabolism and causing cell damage. Furthermore, cytosolic Ca2+ overload results in an increase in mitochondrial Ca2+, resulting in mitochondrial dysfunction and the induction of mitochondrial permeability transition pore (mPTP) opening, leading to mitochondrial swelling and cell death through apoptosis as demonstrated in several neuropathologies. In summary, mitochondrial homeostasis is critical to maintain neuronal function; in fact, their regulation aims to improve neuronal viability and to protect against aging and neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Cálcio/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/etiologia , Neurônios/fisiologia , Animais , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Mitocôndrias/patologia , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068417

RESUMO

The CACNA1A gene encodes the pore-forming α1A subunit of the voltage-gated CaV2.1 Ca2+ channel, essential in neurotransmission, especially in Purkinje cells. Mutations in CACNA1A result in great clinical heterogeneity with progressive symptoms, paroxysmal events or both. During infancy, clinical and neuroimaging findings may be unspecific, and no dysmorphic features have been reported. We present the clinical, radiological and evolutionary features of three patients with congenital ataxia, one of them carrying a new variant. We report the structural localization of variants and their expected functional consequences. There was an improvement in cerebellar syndrome over time despite a cerebellar atrophy progression, inconsistent response to acetazolamide and positive response to methylphenidate. The patients shared distinctive facial gestalt: oval face, prominent forehead, hypertelorism, downslanting palpebral fissures and narrow nasal bridge. The two α1A affected residues are fully conserved throughout evolution and among the whole human CaV channel family. They contribute to the channel pore and the voltage sensor segment. According to structural data analysis and available functional characterization, they are expected to exert gain- (F1394L) and loss-of-function (R1664Q/R1669Q) effect, respectively. Among the CACNA1A-related phenotypes, our results suggest that non-progressive congenital ataxia is associated with developmental delay and dysmorphic features, constituting a recognizable syndromic neurodevelopmental disorder.


Assuntos
Ataxia/patologia , Canais de Cálcio/genética , Mutação , Adulto , Sequência de Aminoácidos , Ataxia/congênito , Ataxia/etiologia , Ataxia/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Criança , Feminino , Humanos , Masculino , Neuroimagem , Fenótipo , Conformação Proteica , Homologia de Sequência , Relação Estrutura-Atividade , Adulto Jovem
16.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802929

RESUMO

In recent years, it has been demonstrated that the application of elicitors such as methyl-jasmonate (MeJ) and benzothiadiazole (BTH) to wine grapes can increase their phenolic and aromatic compounds if they are treated at the beginning of ripening (veraison). However, the veraison period is short, and it is not always possible to apply the treatments in a few days. Therefore, it would be of great interest to optimize the moment of elicitor application or extend the treatment period. The aim of this paper was to analyze during two consecutive years (2016-2017) the foliar application of MeJ, BTH, and a combination of both, during two different ripening periods of Monastrell grapes (veraison and mid-ripening), and determine the more appropriate moment to increase the concentration of anthocyanins. To carry out this aim, analysis of anthocyanins by HPLC in grapes and wines was mainly performed. The most suitable period for the application of MeJ, BTH, and MeJ + BTH was at mid-ripening, since the grapes showed a greater accumulation of anthocyanins at harvest. However, the MeJ + BTH treatment applied during veraison also obtained similar results, which would allow extending the application period if necessary. However, the increase in the anthocyanin content of grapes was not reflected in all the wines, which may have been due to reinforcement of the skin cell wall as a result of the application of elicitors. Further analysis is needed to improve the maceration process of the Monastrell grapes and the extraction of the anthocyanins that were increased by the treatments applied in the vineyard.


Assuntos
Acetatos/farmacologia , Antocianinas/análise , Ciclopentanos/farmacologia , Frutas/química , Oxilipinas/farmacologia , Tiadiazóis/farmacologia , Vitis/química , Vinho/análise , Cromatografia Líquida de Alta Pressão , Cor , Análise Discriminante , Fenóis/análise , Reguladores de Crescimento de Plantas/farmacologia
17.
Biochim Biophys Acta Biomembr ; 1863(9): 183550, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417967

RESUMO

Arachidonic acid (AA) is a fatty acid involved in the modulation of several ion channels. Previously, we reported that AA activates the high conductance Ca2+- and voltage-dependent K+ channel (BK) in vascular smooth muscle depending on the expression of the auxiliary ß1 subunit. Here, using the patch-clamp technique on BK channel co-expressed with ß1 subunit in a heterologous cell expression system, we analyzed whether AA modifies the three functional modules involved in the channel gating: the voltage sensor domain (VSD), the pore domain (PD), and the intracellular calcium sensor domain (CSD). We present evidence that AA activates BK channel in a direct way, inducing VSD stabilization on its active configuration observed as a significant left shift in the Q-V curve obtained from gating currents recordings. Moreover, AA facilitates the channel opening transitions when VSD are at rest, and the CSD are unoccupied. Furthermore, the activation was independent of the intracellular Ca2+ concentration and reduced when the BK channel was co-expressed with the Y74A mutant of the ß1 subunit. These results allow us to present new insigths in the mechanism by which AA modulates BK channels co-expressed with its auxiliary ß1 subunit.


Assuntos
Ácido Araquidônico/farmacologia , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Regulação Alostérica/efeitos dos fármacos , Ácido Araquidônico/química , Células HEK293 , Humanos
18.
HPB (Oxford) ; 23(5): 675-684, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33071150

RESUMO

BACKGROUND: Hepatobiliary resections are challenging due to the complex liver anatomy. Three-dimensional printing (3DP) has gained popularity due to its ability to produce anatomical models based on the characteristics of each patient. METHODS: A multicenter study was conducted on complex hepatobiliary tumours. The endpoint was to validate 3DP model accuracy from original image sources for application in the teaching, patient-communication, and planning of hepatobiliary surgery. RESULTS: Thirty-five patients from eight centers were included. Process testing between 3DP and CT/MRI presented a considerable degree of similarity in vascular calibers (0.22 ± 1.8 mm), and distances between the tumour and vessel (0.31 ± 0.24 mm). The Dice Similarity Coefficient was 0.92, with a variation of 2%. Bland-Altman plots also demonstrated an agreement between 3DP and the surgical specimen with the distance of the resection margin (1.15 ± 1.52 mm). Professionals considered 3DP at a positive rate of 0.89 (95%CI; 0.73-0.95). According to student's distribution a higher success rate was reached with 3DP (median:0.9, IQR: 0.8-1) compared with CT/MRI or 3D digital imaging (P = 0.01). CONCLUSION: 3DP hepatic models present a good correlation compared with CT/MRI and surgical pathology and they are useful for education, understanding, and surgical planning, but does not necessarily affect the surgical outcome.


Assuntos
Modelos Anatômicos , Impressão Tridimensional , Humanos , Imageamento Tridimensional , Fígado/diagnóstico por imagem , Fígado/cirurgia , Imageamento por Ressonância Magnética
19.
Am J Med Genet A ; 185(1): 256-260, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098379

RESUMO

Early-onset severe spinocerebellar ataxia 42 with neurodevelopmental deficits (SCA42ND, MIM#604065) is an ultrarare autosomal dominant syndrome related to de novo CACNA1G gain-of-function pathogenic variants. All patients with SCA42ND show cerebellar atrophy and/or hypoplasia on neuroimaging and share common features such as dysmorphic features, global developmental delay, and axial hypotonia, all manifesting within the first year of life. To date, only 10 patients with SCA42ND have been reported with functionally confirmed gain-of-function variants, bearing either of two recurrent pathogenic variants. We describe a girl with congenital ataxia, without epilepsy, and a de novo p.Ala961Thr pathogenic variant in CACNA1G. We review the published subjects with the aim of better characterizing the dysmorphic features that may be crucial for clinical recognition of SCA42ND. Cerebellar atrophy, together with digital anomalies, particularly broad thumbs and/or halluces, should lead to clinical suspicion of this disease. We describe the first pharmacological attempt to treat a patient with SCA42ND using zonisamide, an antiepileptic drug with T-type channel blocker activity, in an off-label indication using an itemized study protocol. No efficacy was observed at the dose tested. However, without pharmacological treatment, she showed a positive evolution in neurodevelopment during the follow-up.


Assuntos
Canais de Cálcio Tipo T/genética , Epilepsia/genética , Hipotonia Muscular/genética , Ataxias Espinocerebelares/genética , Idade de Início , Alelos , Pré-Escolar , Epilepsia/complicações , Epilepsia/diagnóstico por imagem , Epilepsia/tratamento farmacológico , Feminino , Mutação com Ganho de Função/genética , Humanos , Lactente , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico por imagem , Hipotonia Muscular/tratamento farmacológico , Mutação , Linhagem , Fenótipo , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/tratamento farmacológico , Zonisamida/administração & dosagem
20.
Sci Rep ; 10(1): 20999, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268808

RESUMO

TRPP3 (also called PKD2L1) is a nonselective, cation-permeable channel activated by multiple stimuli, including extracellular pH changes. TRPP3 had been considered a candidate for sour sensor in humans, due to its high expression in a subset of tongue receptor cells detecting sour, along with its membership to the TRP channel family known to function as sensory receptors. Here, we describe the functional consequences of two non-synonymous genetic variants (R278Q and R378W) found to be under strong positive selection in an Ethiopian population, the Gumuz. Electrophysiological studies and 3D modelling reveal TRPP3 loss-of-functions produced by both substitutions. R278Q impairs TRPP3 activation after alkalinisation by mislocation of H+ binding residues at the extracellular polycystin mucolipin domain. R378W dramatically reduces channel activity by altering conformation of the voltage sensor domain and hampering channel transition from closed to open state. Sour sensitivity tests in R278Q/R378W carriers argue against both any involvement of TRPP3 in sour detection and the role of such physiological process in the reported evolutionary positive selection past event.


Assuntos
Canais de Cálcio/genética , Mutação com Perda de Função/genética , Receptores de Superfície Celular/genética , Adolescente , Adulto , Substituição de Aminoácidos/genética , Canais de Cálcio/fisiologia , Etiópia/epidemiologia , Feminino , Imunofluorescência , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Receptores de Superfície Celular/fisiologia , Seleção Genética/genética , Paladar/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA