Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 30(7): 1614-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23596327

RESUMO

Animals inhabiting cryptic environments are often subjected to morphological stasis due to the lack of obvious agents driving selection, and hence chemical cues may be important drivers of sexual selection and individual recognition. Here, we provide a comparative analysis of de novo-assembled transcriptomes in two Mediterranean earthworm species with the objective to detect pheromone proteins and other reproductive genes that could be involved in cryptic speciation processes, as recently characterized in other earthworm species. cDNA libraries of unspecific tissue of Hormogaster samnitica and three different tissues of H. elisae were sequenced in an Illumina Genome Analyzer II or Hi-Seq. Two pheromones, Attractin and Temptin were detected in all tissue samples and both species. Attractin resulted in a reliable marker for phylogenetic inference. Temptin contained multiple paralogs and was slightly overexpressed in the digestive tissue, suggesting that these pheromones could be released with the casts. Genes involved in sexual determination and fertilization were highly expressed in reproductive tissue. This is thus the first detailed analysis of the molecular machinery of sexual reproduction in earthworms.


Assuntos
Evolução Molecular , Oligoquetos/genética , Feromônios/genética , Reprodução/genética , Animais , Anelídeos/genética , Anelídeos/fisiologia , Perfilação da Expressão Gênica , Biblioteca Gênica , Oligoquetos/fisiologia , Feromônios/fisiologia , Filogenia , Alinhamento de Sequência
2.
PLoS One ; 7(10): e47330, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056629

RESUMO

Microorganisms mediating ammonia oxidation play a fundamental role in the connection between biological nitrogen fixation and anaerobic nitrogen losses. Bacteria and Archaea ammonia oxidizers (AOB and AOA, respectively) have colonized similar habitats worldwide. Ammonia oxidation is the rate-limiting step in nitrification, and the ammonia monooxygenase (Amo) is the key enzyme involved. The molecular ecology of this process has been extensively explored by surveying the gene of the subunit A of the Amo (amoA gene). In the present study, we explored the phylogenetic community ecology of AOB and AOA, analyzing 5776 amoA gene sequences from >300 isolation sources, and clustering habitats by environmental ontologies. As a whole, phylogenetic richness was larger in AOA than in AOB, and sediments contained the highest phylogenetic richness whereas marine plankton the lowest. We also observed that freshwater ammonia oxidizers were phylogenetically richer than their marine counterparts. AOA communities were more dissimilar to each other than those of AOB, and consistent monophyletic lineages were observed for sediments, soils, and marine plankton in AOA but not in AOB. The diversification patterns showed a more constant cladogenesis through time for AOB whereas AOA apparently experienced two fast diversification events separated by a long steady-state episode. The diversification rate (γ statistic) for most of the habitats indicated γ(AOA) > γ(AOB). Soil and sediment experienced earlier bursts of diversification whereas habitats usually eutrophic and rich in ammonium such as wastewater and sludge showed accelerated diversification rates towards the present. Overall, this work shows for the first time a global picture of the phylogenetic community structure of both AOB and AOA assemblages following the strictest analytical standards, and provides an ecological view on the differential evolutionary paths experienced by widespread ammonia-oxidizing microorganisms. The emerged picture of AOB and AOA distribution in different habitats provides a new view to understand the ecophysiology of ammonia oxidizers on Earth.


Assuntos
Amônia/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Ecossistema , Archaea/enzimologia , Bactérias/enzimologia , Oxirredução , Oxirredutases/metabolismo , Filogenia
3.
Mol Ecol ; 21(8): 1909-17, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22121910

RESUMO

The rate of information collection generated by metagenomics is uncoupled with its meaningful ecological interpretation. New analytical approaches based on functional trait-based ecology may help to bridge this gap and extend the trait approach to the community level in vast and complex environmental genetic data sets. Here, we explored a set of community traits that range from nucleotidic to genomic properties in 53 metagenomic aquatic samples from the Global Ocean Sampling (GOS) expedition. We found significant differences between the community profile derived from the commonly used 16S rRNA gene and from the functional trait set. The traits proved to be valuable ecological markers by discriminating between marine ecosystems (coastal vs. open ocean) and between oceans (Atlantic vs. Indian vs. Pacific). Intertrait relationships were also assessed, and we propose some that could be further used as habitat descriptors or indicators of artefacts during sample processing. Overall, the approach presented here may help to interpret metagenomics data to gain a full understanding of microbial community patterns in a rigorous ecological framework.


Assuntos
Ecossistema , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Oceano Atlântico , Genes de RNAr , Oceanos e Mares , Oceano Pacífico
4.
Appl Environ Microbiol ; 77(24): 8676-86, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22003006

RESUMO

Proteorhodopsin phototrophy is expected to have considerable impact on the ecology and biogeochemical roles of marine bacteria. However, the genetic features contributing to the success of proteorhodopsin-containing bacteria remain largely unknown. We investigated the genome of Dokdonia sp. strain MED134 (Bacteroidetes) for features potentially explaining its ability to grow better in light than darkness. MED134 has a relatively high number of peptidases, suggesting that amino acids are the main carbon and nitrogen sources. In addition, MED134 shares with other environmental genomes a reduction in gene copies at the expense of important ones, like membrane transporters, which might be compensated by the presence of the proteorhodopsin gene. The genome analyses suggest Dokdonia sp. MED134 is able to respond to light at least partly due to the presence of a strong flavobacterial consensus promoter sequence for the proteorhodopsin gene. Moreover, Dokdonia sp. MED134 has a complete set of anaplerotic enzymes likely to play a role in the adaptation of the carbon anabolism to the different sources of energy it can use, including light or various organic matter compounds. In addition to promoting growth, proteorhodopsin phototrophy could provide energy for the degradation of complex or recalcitrant organic matter, survival during periods of low nutrients, or uptake of amino acids and peptides at low concentrations. Our analysis suggests that the ability to harness light potentially makes MED134 less dependent on the amount and quality of organic matter or other nutrients. The genomic features reported here may well be among the keys to a successful photoheterotrophic lifestyle.


Assuntos
Flavobacteriaceae/crescimento & desenvolvimento , Flavobacteriaceae/genética , Genoma Bacteriano , Processos Fototróficos , Rodopsina/metabolismo , Carbono/metabolismo , Flavobacteriaceae/metabolismo , Luz , Compostos Orgânicos/metabolismo , Regiões Promotoras Genéticas , Rodopsinas Microbianas
5.
Mol Phylogenet Evol ; 61(3): 650-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864693

RESUMO

Comparative genomics is an essential tool to unravel how genomes change over evolutionary time and to gain clues on the links between functional genomics and evolution. In prokaryotes, the large, good quality, genome sequences available in public databases and the recently developed large-scale computational methods, offer an unprecedent view on the ecology and evolution of microorganisms through comparative genomics. In this work, we examined the links among genome structure (i.e., the sequential distribution of nucleotides itself by detrended fluctuation analysis, DFA) and genomic diversity (i.e., gene functionality by Clusters of Orthologous Genes, COGs) in 828 full sequenced prokaryotic genomes from 548 different bacteria and archaea species. DFA scaling exponent α indicated persistent long-range correlations (fractality) in each genome analyzed. Higher resolution power was found when considering the sequential succession of purine (AG) vs. pyrimidine (CT) bases than either keto (GT) to amino (AC) forms or strongly (GC) vs. weakly (AT) bonded nucleotides. Interestingly, the phyla Aquificae, Fusobacteria, Dictyoglomi, Nitrospirae, and Thermotogae were closer to archaea than to their bacterial counterparts. A strong significant correlation was found between scaling exponent α and COGs distribution, and we consistently observed that the larger α the more heterogeneous was the gene distribution within each functional category, suggesting a close relationship between primary nucleotides sequence structure and functional genes composition.


Assuntos
Genoma Arqueal/genética , Genoma Bacteriano/genética , Nucleotídeos/genética , Filogenia , Células Procarióticas/metabolismo , Sequência de Bases , Biologia Computacional , DNA Arqueal/genética , DNA Bacteriano/genética , Família Multigênica/genética
6.
Mol Ecol ; 20(9): 1988-96, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21395891

RESUMO

Despite its widespread distribution and high levels of phylogenetic diversity, microbes are poorly understood creatures. We applied a phylogenetic ecology approach in the Kingdom Euryarchaeota (Archaea) to gain insight into the environmental distribution and evolutionary history of one of the most ubiquitous and largely unknown microbial groups. We compiled 16S rRNA gene sequences from our own sequence libraries and public genetic databases for two of the most widespread mesophilic Euryarchaeota clades, Lake Dagow Sediment (LDS) and Rice Cluster-V (RC-V). The inferred population history indicated that both groups have undergone specific nonrandom evolution within environments, with several noteworthy habitat transition events. Remarkably, the LDS and RC-V groups had enormous levels of genetic diversity when compared with other microbial groups, and proliferation of sequences within each single clade was accompanied by significant ecological differentiation. Additionally, the freshwater Euryarchaeota counterparts unexpectedly showed high phylogenetic diversity, possibly promoted by their environmental adaptability and the heterogeneous nature of freshwater ecosystems. The temporal phylogenetic diversification pattern of these freshwater Euryarchaeota was concentrated both in early times and recently, similarly to other much less diverse but deeply sampled archaeal groups, further stressing that their genetic diversity is a function of environment plasticity. For the vast majority of living beings on Earth (i.e. the uncultured microorganisms), how they differ in the genetic or physiological traits used to exploit the environmental resources is largely unknown. Inferring population history from 16S rRNA gene-based molecular phylogenies under an ecological perspective may shed light on the intriguing relationships between lineage, environment, evolution and diversity in the microbial world.


Assuntos
Ecossistema , Euryarchaeota/classificação , Euryarchaeota/genética , Genes de RNAr/genética , Biodiversidade , Bases de Dados Genéticas , Meio Ambiente , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Proc Natl Acad Sci U S A ; 105(25): 8724-9, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18552178

RESUMO

Analysis of marine cyanobacteria and proteobacteria genomes has provided a profound understanding of the life strategies of these organisms and their ecotype differentiation and metabolisms. However, a comparable analysis of the Bacteroidetes, the third major bacterioplankton group, is still lacking. In the present paper, we report on the genome of Polaribacter sp. strain MED152. On the one hand, MED152 contains a substantial number of genes for attachment to surfaces or particles, gliding motility, and polymer degradation. This agrees with the currently assumed life strategy of marine Bacteroidetes. On the other hand, it contains the proteorhodopsin gene, together with a remarkable suite of genes to sense and respond to light, which may provide a survival advantage in the nutrient-poor sun-lit ocean surface when in search of fresh particles to colonize. Furthermore, an increase in CO(2) fixation in the light suggests that the limited central metabolism is complemented by anaplerotic inorganic carbon fixation. This is mediated by a unique combination of membrane transporters and carboxylases. This suggests a dual life strategy that, if confirmed experimentally, would be notably different from what is known of the two other main bacterial groups (the autotrophic cyanobacteria and the heterotrophic proteobacteria) in the surface oceans. The Polaribacter genome provides insights into the physiological capabilities of proteorhodopsin-containing bacteria. The genome will serve as a model to study the cellular and molecular processes in bacteria that express proteorhodopsin, their adaptation to the oceanic environment, and their role in carbon-cycling.


Assuntos
Flavobacteriaceae/genética , Genoma Bacteriano , Rodopsina/genética , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Flavobacteriaceae/metabolismo , Genes Bacterianos , Modelos Biológicos , Rodopsina/metabolismo , Rodopsinas Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA