Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356010

RESUMO

In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also determined. Two samples filtered through glass fiber filters were used for the extraction and analysis of paralytic shellfish toxins (PSTs) by lateral flow immunochromatography (IFL), HPLC with post-column oxidation and fluorescent detection (FLD) and UHPLC coupled to tandem mass spectrometry (UHPLC-MS/MS). Elevated nutrient contents were associated with the sites of rainwater discharge or those near anthropogenic activities. A predominance of the dinoflagellate Pyrodinium bahamense was found with abundances of up to 104 cells L-1. Identification of the dinoflagellate was corroborated by light and scanning electron microscopy. Samples for toxins were positive by IFL, and the analogs NeoSTX and STX were identified and quantified by HPLC-FLD and UHPLC-MS/MS, with a total PST concentration of 6.5 pg cell-1. This study is the first report that confirms the presence of PSTs in P. bahamense in Mexican waters of the Gulf of Mexico.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Toxinas Marinhas/análise , Espectrometria de Massas em Tandem/métodos , Golfo do México , Dinoflagellida/química , Frutos do Mar/análise , Saxitoxina
2.
Toxins (Basel) ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35878239

RESUMO

The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in both fisheries and aquaculture. In the Gulf of California, G. catenatum has been related to mass mortality events in fish, shrimp, seabirds, and marine mammals. In this study, the growth, toxin profiles, and toxin content of four G. catenatum strains isolated from Bahía de La Paz (BAPAZ) and Bahía de Mazatlán (BAMAZ) were evaluated with different N:P ratios, keeping the phosphorus concentration constant. All strains were cultivated in semi-continuous cultures (200 mL, 21.0 °C, 120 µmol photon m-2s-1, and a 12:12 h light-dark cycle) with f/2 + Se medium using N:P ratios of: 4:1, 8:1, 16:1, 32:1, and 64:1. Paralytic toxins were analyzed by HPLC with fluorescence detection. Maximum cellular abundance and growth were obtained at an N:P ratio of 64:1 (3188 cells mL-1 and 0.34 div day-1) with the BAMAZ and BAPAZ strains. A total of ten saxitoxin analogs dominated by N-sulfocarbamoyl (60-90 mol%), decarbamoyl (10-20 mol%), and carbamoyl (5-10 mol%) toxins were detected. The different N:P ratios did not cause significant changes in the PST content or toxin profiles of the strains from both bays, although they did affect cell abundance.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Toxinas Biológicas , Animais , Cromatografia Líquida de Alta Pressão , Mamíferos , Saxitoxina/análise
3.
Harmful Algae ; 51: 1-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28003057

RESUMO

The allelopathic effect of the raphidophyte Chattonella marina var. marina on the dinoflagellate Gymnodinium catenatum was determined. Both species are harmful algal bloom forming algae, produce toxic metabolites, and can co-exist in the environment. In general, raphidophytes tend to dominate over dinoflagellates, which may indicate an allelopathic effect of the former algae. Strains of C. marina var. marina and G. catenatum isolated from Bahía de La Paz were cultured in bi-algal cultures with and without cell contact. Additionally, cultures of G. catenatum were exposed to cell-free culture filtrates of the raphidophyte to test whether soluble allelopathic molecules are active. During late stationary phase, both species were cultivated in mixed cultures for 72h using the following cell abundance proportions: 20×103cellsL-1: 20×103cellsL-1 (1:1; G. catenatum: C. marina); 10×103cellsL-1: 20×103cellsL-1 (1:2), and 20×103cellsL-1: 10×103cellsL-1 (2:1). Cells of G. catenatum were also exposed to different volumes of cell filtrates of C. marina (10, 20, and 50mL) using the same cell abundance proportions for 24h. Samples were taken daily for cell counts and microscopic observations. Growth inhibition was higher when there was cell contact between both species, however mortality of G. catenatum was also observed without direct cell contact, indicating that toxic metabolites are liberated to the culture medium. Changes in cell morphology of G. catenatum occurred in the presence of cells and filtrates of C. marina, such as loss of flagella and motility, swelling, loss of girdle and sulci, prominent nucleus, rupture of cell membrane, and cell lysis. Induction of temporary cysts was also observed. These results suggest that toxic metabolites are liberated to the medium by C. marina, affecting G. catenatum by inhibiting its growth and causing changes in its life history, providing new insights of interactions between raphidophytes and dinoflagellates that could happen in the natural environment when both species are present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA