Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dent Mater ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871524

RESUMO

OBJECTIVES: To investigate the transdentinal effects of surface reaction-type pre-reacted glass-ionomer (S-PRG) fillers on odontoblast-like cells. METHODS: An eluate of S-PRG fillers was obtained by dissolving the particles in distilled water (1:1 m/v). Dentin discs with similar permeability were mounted into artificial pulp chambers and MDPC-23 cells were seeded on their pulpal surface. The occlusal surface was treated with (n = 10): ultrapure water (negative control - NC), hydrogen peroxide (positive control - PC), S-PRG eluate exposure for 1 min (S-PRG 1 min), or S-PRG filler eluate exposure for 30 min (S-PRG 30 min). After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extract obtained from transdentinal diffusion was applied to MDPC-23 pre-cultured in plates for another 24 h to evaluate viability (alamarBlue, 1, 3, and 7 days), gene expression of Col1a1, Alpl, Dspp, and Dmp1 (RT-qPCR, 1 and 7 days), and mineralization (Alizarin Red, 7 days). Data were analyzed with ANOVA (α = 5 %). RESULTS: While S-PRG 1 min did not differ from NC, S-PRG 30 min reduced 17.9 % viability of cells from discs. S-PRG treatments resulted in low cell detaching from dentin, and the remaining cells exhibited typical morphology or minor cytoplasmic contraction. S-PRG 30 min slightly increased cell viability (6 %) 1 day after contact with the extract. S-PRG treatments upregulated the expression of the investigated genes, especially after 1 day. S-PRG 30 min stimulated mineralization activity by 39.7 %. CONCLUSIONS: S-PRG filler eluate does not cause transdentinal cytotoxicity on odontoblast-like cells, and long-term exposure can stimulate their dentinogenic-related mineralization activity. SIGNIFICANCE: The transdentinal elution of ions from S-PRG fillers is not expected to be harmful to the dental pulp and may exert bioactive effects by inducing dentin matrix deposition through the metabolism of underlying odontoblasts.

2.
J Funct Biomater ; 15(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667554

RESUMO

This study investigated the incorporation of sources of calcium, phosphate, or both into electrospun scaffolds and evaluated their bioactivity on human dental pulp cells (HDPCs). Additionally, scaffolds incorporated with calcium hydroxide (CH) were characterized for degradation, calcium release, and odontogenic differentiation by HDPCs. Polycaprolactone (PCL) was electrospun with or without 0.5% w/v of calcium hydroxide (PCL + CH), nano-hydroxyapatite (PCL + nHA), or ß-glycerophosphate (PCL + ßGP). SEM/EDS analysis confirmed fibrillar morphology and particle incorporation. HDPCs were cultured on the scaffolds to assess cell viability, adhesion, spreading, and mineralized matrix formation. PCL + CH was also evaluated for gene expression of odontogenic markers (RT-qPCR). Data were submitted to ANOVA and Student's t-test (α = 5%). Added CH increased fiber diameter and interfibrillar spacing, whereas ßGP decreased both. PCL + CH and PCL + nHA improved HDPC viability, adhesion, and proliferation. Mineralization was increased eightfold with PCL + CH. Scaffolds containing CH gradually degraded over six months, with calcium release within the first 140 days. CH incorporation upregulated DSPP and DMP1 expression after 7 and 14 days. In conclusion, CH- and nHA-laden PCL fiber scaffolds were cytocompatible and promoted HDPC adhesion, proliferation, and mineralized matrix deposition. PCL + CH scaffolds exhibit a slow degradation profile, providing sustained calcium release and stimulating HDPCs to upregulate odontogenesis marker genes.

3.
Clin Oral Investig ; 27(12): 7295-7306, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853265

RESUMO

OBJECTIVES: To investigate the response of pulp cells to the application of silver diamine fluoride (SDF) and potassium iodide (KI) on demineralized dentin. MATERIALS AND METHODS: The occlusal surfaces of human dentin discs (0.4 mm thick) with similar permeability were subjected to an artificial caries protocol, and then the discs were adapted into artificial pulp chambers. MDPC-23 cells were seeded on the healthy pulp dentin surface, while the demineralized surface was treated with SDF, KI, SDF + KI, or hydrogen peroxide (positive control-PC) (n = 8). The negative control (NC) received ultrapure water. After 24 h, cell viability (alamarBlue) and morphology (SEM) were evaluated. The extracts were then applied to new MDPC-23 cells seeded in culture plates to assess their viability and the formation of mineralized nodules (MN; Alizarin Red) after seven days. The data were analyzed using one-way analysis of variance/Tukey or Games-Howell tests (α = 5%). RESULTS: SDF and PC significantly reduced the viability of cells seeded on discs (45.6% and 71.0%, respectively). Only cells treated with SDF or PC detached from the dentin substrate, while the remaining cells showed altered morphology. Cells in contact with extracts showed less reduction in viability, but it was still more toxic compared to NC. Only PC reduced MN deposition. SDF + KI or KI alone did not affect the cell response. CONCLUSIONS: SDF applied alone showed a mild to moderate transdentinal cytotoxic effect on pulp cells. However, the combination of SDF + KI reduced the cytotoxic effects. Both materials used alone or in combination did not affect the mineralization ability of pulp cells. CLINICAL RELEVANCE: Besides improving esthetic results, associating potassium iodide with silver diamine fluoride may reduce the transdentinal cytotoxic effects of this cariostatic agent on pulp cells.


Assuntos
Cárie Dentária , Iodeto de Potássio , Humanos , Iodeto de Potássio/farmacologia , Iodeto de Potássio/uso terapêutico , Cavidade Pulpar , Suscetibilidade à Cárie Dentária , Dentina , Estética Dentária , Fluoretos Tópicos/farmacologia , Cárie Dentária/tratamento farmacológico , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/uso terapêutico
4.
Photodiagnosis Photodyn Ther ; 40: 103069, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35987461

RESUMO

OBJECTIVE: To assess the potential influence of violet LED (V-LED) application time on the esthetic efficacy and cytotoxicity of a 35% H2O2 bleaching gel. METHODOLOGY: Stained and standardized enamel/dentin discs were subjected to one in-office tooth bleaching session (45 min), and the gel was either irradiated or not with V-LED. Thus, the following groups were established (n = 8): G1: No treatment (negative control, NC); G2: 35% H2O2 (positive control, PC); G3: 35%H2O2 + V-LED/15 min; G4: 35%H2O2 + V-LED/30 min; G5: 35%H2O2 + V-LED/45 min. First, esthetic efficacy was assessed (ΔE00 and ΔWI). Discs assembled in artificial pulp chambers were subjected to the same bleaching treatments. Then, the extracts (culture medium + diffused bleaching gel components) were collected and applied to MDPC-23 pulp cells, which were analyzed for viability (Live/Dead, MTT) and oxidative stress (OxS). The amount of H2O2 in the extracts was also determined (leuco crystal-violet/peroxidase). The data were subjected to ANOVA/Tukey at a 5% significance level. RESULTS: Although esthetic efficacy did not differ among the irradiated groups (G3, G4, and G5) (p > 0.05), their results were higher than in G2 (PC; p < 0.05). In the irradiated groups, the cell viability and OxS as well as the amount of H2O2 in the extracts were statistically similar to G2 (PC), regardless of irradiation time (p > 0.05). CONCLUSION: Although V-LED improves the esthetic outcome of in-office tooth bleaching, increasing irradiation time does not effect the color changes and cytotoxicity of this professional therapy.


Assuntos
Fotoquimioterapia , Clareadores Dentários , Clareamento Dental , Peróxido de Hidrogênio , Fotoquimioterapia/métodos , Clareamento Dental/métodos , Clareadores Dentários/farmacologia , Sobrevivência Celular , Ácido Hipocloroso
5.
J Dent ; 124: 104237, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863550

RESUMO

OBJECTIVES: To evaluate the inhibitory activity of an ion-releasing filler (S-PRG) eluate on dentin collagen-bound metalloproteinases (MMPs) and dentin matrix degradation. METHODS: Dentin beams (5 × 2 × 0.5 mm) from human molars were completely demineralized to produce dentin matrix specimens. The dry mass was measured, and a colorimetric assay (Sensolyte) determined the initial total MMP activity to allocate the beams into four treatment groups (n = 10/group): 1) water for 1 min (negative control); 2) 2% chlorhexidine digluconate (CHX - inhibitor control) for 1 min; 3) S-PRG eluate for 1 min; 4) S-PRG eluate for 30 min. After the treatments, the total MMP activity was reassessed. The specimens were stored in simulated body fluid (SBF) at 37 °C for up to 21 days. The dry mass was reassessed weekly. On day 7, the dentin matrix degradation was analyzed for the presence of collagen fragments (CF; Sirius Red) and hydroxyproline (Hyp) in the SBF. Statistical analyses were performed with ANOVA/Tukey, paired t-tests, and RM-ANOVA/Sidak (α = 5%). RESULTS: S-PRG eluate exposure for 1 and 30 min reduced (p < 0.0001) MMP activity. S-PRG exposure for 30 min presented MMP activity inhibition equivalent to CHX (p = 0.061). S-PRG and CHX decreased CF (p ≤ 0.007) and Hyp (p < 0.046) release. After 21 days of storage, S-PRG-treated beams, regardless of exposure time, presented a reduced (p ≤ 0.017) mass loss, intermediate between CHX and control. CONCLUSION: Treating demineralized dentin with S-PRG eluate for 1 or 30 min reduced matrix-bound MMP activity and dentin matrix degradation for up to 21 days. CLINICAL SIGNIFICANCE: S-PRG filler may hinder the progression of dentin carious/erosive lesions and enhance the stabilization of dentin bonding interfaces.


Assuntos
Colágeno , Dentina , Colágeno/metabolismo , Colágeno/farmacologia , Dentina/metabolismo , Humanos , Hidroxiprolina/metabolismo , Metaloproteinases da Matriz/metabolismo , Dente Molar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA