Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183952

RESUMO

Leachate, an effluent produced during solid waste decomposition, interacts directly with soil, mainly in dumpsite areas. Studies on terrestrial animal exposure to leachate are, however, lacking. Plants are the most frequently studied organisms, while animal studies, especially earthworms, are limited. Nevertheless, ecotoxicological assessments involving earthworms are crucial due to their role in soil health and ecosystem maintenance, which are paramount in understanding potential terrestrial ecosystem leachate effects. In this context, this study aimed to evaluate behavioral effects, sublethal cytotoxicity and antioxidant system alterations in Eisenia andrei earthworms chronically exposed to leachate from a closed dumpsite. Cytotoxicity was determined by coelomocyte density, viability and cell typing, while antioxidant system alterations were assessed through superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), reduced glutathione (GSH) and metallothionein (MT) determinations. Malondialdehyde (MDA) and protein carbonylation (PTC) levels were also determined as oxidative effect markers. Finally, the Biomarker Response Index (BRI) was assessed, aiming to quantitatively integrate the results of the investigated endpoints and establish a biological health state (BHS) for each leachate concentration. Leachate exposure led to leak responses at concentrations of up to 50%, but attraction at higher concentrations. Decreased cell density (28%) was observed after 48 days and reduced viability (50%), after 14 days of leachate exposure. The observed cell typing changes indicate anti-inflammatory immune system effects. Leachate exposure led to several antioxidant system alterations, increasing SOD (2-6 %), CAT (5-35 %) and GST (5-70 %) activities and GSH (7-37%) and MT (3-67%) levels. Earthworm antioxidant defenses were, however, able to prevent lipid peroxidation, which decreased (11-37%) following leachate exposure to concentrations above 12.5%, and PTC, which increased at 42 days (26%) and reduced at 56 days (12 %). This is the first PTC assessment in leachate-exposed earthworms. The increased carbonylation levels observed after 42 days alongside MDA decreases highlight the need for further research employing oxidative effect biomarkers other than MDA. Finally, an integrated approach employing the BRI was carried out, revealing mild initial changes evolving to moderate to major effects at the highest leachate exposure concentration, with an effect attenuation detected at the end of the experiment. In this sense, this study brings forth a significant novelty, employing a biomarker previously not assessed in earthworms, demonstrating an oxidative effect, alongside the use of the BRI as an integrative tool for the endpoints applied in this assessment.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/metabolismo , Oligoquetos/metabolismo , Estresse Oxidativo , Ecossistema , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo , Solo , Biomarcadores/metabolismo
2.
Ecotoxicol Environ Saf ; 171: 781-789, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30660971

RESUMO

Contaminants of emerging concern have become an important environmental problem, especially pharmaceutically active compounds (PhACs), since, after use, these drugs return to the environment, contaminating aquatic ecosystems. Some may display the ability to bioaccumulate and biomagnify throughout the food chain, leading to potential environmental and human deleterious effects which are, however, still largely unknown. In this context, the aim of the present study was to evaluate the effect of two psychotropic drugs commonly found in the environment, carbamazepine (CBZ) and clonazepam (CZP), both isolated and co-administrated, on oxidative stress biomarkers and essential metal homeostasis in Danio rerio fish specimens. No studies are available to data in this regard concerning CZP effects on fish. Reduced Glutathione (GSH), Metallothionein (MT), Catalase (CAT) and Glutathione S-Transferase (GST) were determined, as well as essential metals in fish liver, kidney and brains. Significant oxidative stress effects were observed for several biomarkers, where brain GST activity was the most affected, mainly with regard to CBZ exposure, while GST and CAT activity in the liver were downregulated in the co-administration mixture. In addition, dishomeostasis of several essential elements was detected in all analyzed organs, with a synergistic action of CBZ and CZP in brain, decreasing basal Mg, Al, K, Fe, Co, Ni and Cu levels in this organ, the target site for these drugs in humans. The brain organ was the most affected as observed by altered GST activity and metal dyshomeostasis concerning exposure to both compounds. These compounds, thus, present health risks to the aquatic biota, due to the evidenced deleterious effects and their constant release into the environment due to widespread use. Steps are needed to implement adequate legislation for risk analysis and decision-making in order to mitigate the effects of these emerging contaminants on aquatic ecosystem health.


Assuntos
Carbamazepina/toxicidade , Clonazepam/toxicidade , Metais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Psicotrópicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metalotioneína/metabolismo , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA