Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Haematologica ; 109(2): 509-520, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646653

RESUMO

While novel radioisotope therapies continue to advance cancer care, reports of therapy-related myeloid neoplasms (t-MN) have generated concern. The prevalence and role of clonal hematopoiesis (CH) in this process remain to be defined. We hypothesized that: (i) CH is prevalent in relapsed follicular lymphoma and is associated with t-MN transformation, and (ii) radiation in the form of radioimmunotherapy (RIT) plays a role in clonal progression. In this retrospective cohort study, we evaluated the prevalence and prognostic impact of CH on clinical outcomes in 58 heavily pre-treated follicular lymphoma patients who received RIT. Patients had been given a median of four lines of therapy before RIT. The prevalence of CH prior to RIT was 46%, while it was 67% (P=0.15) during the course of RIT and subsequent therapies in the paired samples. Fourteen (24%) patients developed t-MN. Patients with t-MN had a higher variant allele fraction (38% vs. 15%; P=0.02) and clonal complexity (P=0.03) than those without. The spectrum of CH differed from that in age-related CH, with a high prevalence of DNA damage repair and response pathway mutations, absence of spliceosome mutations, and a paucity of signaling mutations. While there were no clear clinical associations between RIT and t-MN, or overall survival, patients with t-MN had a higher mutant clonal burden, along with extensive chromosomal abnormalities (median survival, afer t-MN diagnosis, 0.9 months). The baseline prevalence of CH was high, with an increase in prevalence on exposure to RIT and subsequent therapies. The high rates of t-MN with marked clonal complexities and extensive chromosomal damage underscore the importance of better identifying and studying genotoxic stressors accentuated by therapeutic modalities.


Assuntos
Linfoma Folicular , Segunda Neoplasia Primária , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/genética , Linfoma Folicular/tratamento farmacológico , Radioimunoterapia/efeitos adversos , Prognóstico , Estudos Retrospectivos , Hematopoiese Clonal , Segunda Neoplasia Primária/etiologia , Hematopoese
2.
Am J Hematol ; 98(12): E357-E359, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665761

RESUMO

Somatic mosaic states in telomere biology disorders are characterized by somatic variants in the spliceosome and DNA damage response and repair pathways. A likely maladaptive response to short telomeres that may lead to increased hematological cancer.


Assuntos
Telomerase , Telômero , Humanos , Fator de Processamento U2AF/genética , Telômero/genética , Telômero/metabolismo , Biologia , Telomerase/genética , Telomerase/metabolismo
3.
Genes (Basel) ; 14(6)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37372428

RESUMO

The snATAC + snRNA platform allows epigenomic profiling of open chromatin and gene expression with single-cell resolution. The most critical assay step is to isolate high-quality nuclei to proceed with droplet-base single nuclei isolation and barcoding. With the increasing popularity of multiomic profiling in various fields, there is a need for optimized and reliable nuclei isolation methods, mainly for human tissue samples. Herein we compared different nuclei isolation methods for cell suspensions, such as peripheral blood mononuclear cells (PBMC, n = 18) and a solid tumor type, ovarian cancer (OC, n = 18), derived from debulking surgery. Nuclei morphology and sequencing output parameters were used to evaluate the quality of preparation. Our results show that NP-40 detergent-based nuclei isolation yields better sequencing results than collagenase tissue dissociation for OC, significantly impacting cell type identification and analysis. Given the utility of applying such techniques to frozen samples, we also tested frozen preparation and digestion (n = 6). A paired comparison between frozen and fresh samples validated the quality of both specimens. Finally, we demonstrate the reproducibility of scRNA and snATAC + snRNA platform, by comparing the gene expression profiling of PBMC. Our results highlight how the choice of nuclei isolation methods is critical for obtaining quality data in multiomic assays. It also shows that the measurement of expression between scRNA and snRNA is comparable and effective for cell type identification.


Assuntos
Epigenômica , Leucócitos Mononucleares , Humanos , Multiômica , Reprodutibilidade dos Testes , RNA Nuclear Pequeno/genética
4.
Blood ; 142(3): 244-259, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084382

RESUMO

Vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome is caused by somatic mutations in UBA1 (UBA1mut) and characterized by heterogenous systemic autoinflammation and progressive hematologic manifestations, meeting criteria for myelodysplastic syndrome (MDS) and plasma cell dyscrasias. The landscape of myeloid-related gene mutations leading to typical clonal hematopoiesis (CH) in these patients is unknown. Retrospectively, we screened 80 patients with VEXAS for CH in their peripheral blood (PB) and correlated the findings with clinical outcomes in 77 of them. UBA1mut were most common at hot spot p.M41 (median variant allele frequency [VAF] = 75%). Typical CH mutations cooccurred with UBA1mut in 60% of patients, mostly in DNMT3A and TET2, and were not associated with inflammatory or hematologic manifestations. In prospective single-cell proteogenomic sequencing (scDNA), UBA1mut was the dominant clone, present mostly in branched clonal trajectories. Based on integrated bulk and scDNA analyses, clonality in VEXAS followed 2 major patterns: with either typical CH preceding UBA1mut selection in a clone (pattern 1) or occurring as an UBA1mut subclone or in independent clones (pattern 2). VAF in the PB differed markedly between DNMT3A and TET2 clones (median VAF of 25% vs 1%). DNMT3A and TET2 clones associated with hierarchies representing patterns 1 and 2, respectively. Overall survival for all patients was 60% at 10 years. Transfusion-dependent anemia, moderate thrombocytopenia, and typical CH mutations, each correlated with poor outcome. In VEXAS, UBA1mut cells are the primary cause of systemic inflammation and marrow failure, being a new molecularly defined somatic entity associated with MDS. VEXAS-associated MDS is distinct from classical MDS in its presentation and clinical course.


Assuntos
Hematopoiese Clonal , Dermatite , Humanos , Hematopoiese Clonal/genética , Estudos Prospectivos , Estudos Retrospectivos , Mutação
5.
Arterioscler Thromb Vasc Biol ; 43(5): 774-783, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951061

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) of indeterminate potential (CHIP) is a risk factor for cardiovascular disease. The relationship between CHIP and coronary microvascular dysfunction (CMD) is unknown. The current study examines the association between CHIP and CH with CMD and the potential relationships in risk for adverse cardiovascular outcomes. METHODS: In this retrospective observational study, targeted next-generation sequencing was performed for 177 participants with no coronary artery disease who presented with chest pain and underwent routine coronary functional angiogram. Patients with somatic mutations in leukemia-associated driver genes in hematopoietic stem and progenitor cells were examined; CHIP was considered at a variant allele fraction ≥2%; CH was considered at a variant allele fraction ≥1%. CMD was defined as coronary flow reserve to intracoronary adenosine of ≤2. Major adverse cardiovascular events considered were myocardial infarction, coronary revascularization, or stroke. RESULTS: A total of 177 participants were examined. Mean follow-up was 12±7 years. A total of 17 patients had CHIP and 28 had CH. Cases with CMD (n=19) were compared with controls with no CMD (n=158). Cases were 56±9 years, were 68% women, and had more CHIP (27%; P=0.028) and CH (42%; P=0.001) than controls. CMD was associated with independent risk for major adverse cardiovascular events (hazard ratio, 3.89 [95% CI, 1.21-12.56]; P=0.023), and 32% of this risk was mediated by CH. The risk mediated by CH was ≈0.5× as large as the direct effect of CMD on major adverse cardiovascular events. CONCLUSIONS: In humans, we observe patients with CMD are more likely to have CHIP, and nearly one-third of major adverse cardiovascular events in CMD are mediated by CH.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Isquemia Miocárdica , Humanos , Feminino , Masculino , Hematopoiese Clonal/genética , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Artérias
8.
Curr Hematol Malig Rep ; 17(4): 82-93, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653077

RESUMO

PURPOSE OF REVIEW: Somatic mutations in DNA methyltransferases and other DNA methylation associated genes have been found in a wide variety of cancers. Germline mutations in these genes have been associated with several rare hereditary disorders. Among the described germline/congenital disorders, neurological dysfunction and/or growth abnormalities appear to be a common phenotype. Here, we outline known germline abnormalities and examine the cancer risks associated with these mutations. RECENT FINDINGS: The increased use and availability of sequencing techniques in the clinical setting has expanded the identification of germline abnormalities involving DNA methylation machinery. This has provided additional cases to study these rare hereditary disorders and their predisposition to cancer. Studying these syndromes may offer an opportunity to better understand the contribution of these genes in cancer development.


Assuntos
Metilação de DNA , Neoplasias , Predisposição Genética para Doença , Células Germinativas , Mutação em Linhagem Germinativa , Código das Histonas , Humanos , Neoplasias/genética
10.
Semin Hematol ; 58(4): 226-229, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34802544

RESUMO

Clonal hematopoiesis (CH) is defined by the acquisition of somatic mutations in hematopoietic stem cells (HSC) leading to enhanced cellular fitness and proliferation under positive clonal selection pressures. CH most frequently involves epigenetic regulator genes (DNMT3A, TET2 and ASXL1), with these mutations being associated with enhanced inflammation and increased all-cause mortality largely from cardiovascular disease and endothelial dysfunction. These mutations also increase the risk for hematological neoplasms. Somatic mutations in UBA1, encoding the E1 ubiquitin ligase in HSC, cause a severe adult-onset autoinflammatory disease that can be associated with myeloid and plasma cell neoplasms, termed VEXAS (vacuoles, X-linked, autoinflammatory, somatic) syndrome. Given the degree of inflammation seen, one would have expected this to be a fertile ground for CH development and propagation, however, preliminary data doesn't support this. Here in, we review the current data on CH, inflammation and VEXAS syndrome.


Assuntos
Hematopoiese Clonal , Mieloma Múltiplo , Adulto , Células Clonais , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Mutação
11.
Biopolymers ; 112(1): e23405, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33098572

RESUMO

Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.


Assuntos
Citosina/química , Reparo do DNA , Corantes Fluorescentes/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Alquilação , Pareamento de Bases , Biocatálise , Ilhas de CpG/genética , Citidina/análogos & derivados , Citidina/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Pirróis/química , Proteína Supressora de Tumor p53/genética
12.
Chem Res Toxicol ; 32(5): 831-839, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30942577

RESUMO

Lipopolysaccharide (LPS) is a bacterial endotoxin present in cigarette smoke. LPS is known to induce inflammation and to increase the size and the multiplicity of lung tumors induced by tobacco-specific nitrosamines. However, the means by which LPS contributes to pulmonary carcinogenesis are not known. One possible mechanism includes LPS-mediated epigenetic deregulation, which leads to aberrant expression of genes involved in DNA repair, tumor suppression, cell cycle progression, and cell growth. In the present work, epigenetic effects of LPS were examined in alveolar type II lung cells of A/J mice. Type II cells were selected because they serve as progenitors of lung adenocarcinomas in smoking induced lung cancer. A/J mice were intranasally treated with LPS, followed by isolation of alveolar type II cells from the lung using cell panning. Global levels of DNA methylation and histone acetylation were quantified by mass spectrometry, while genome-wide transcriptomic changes were characterized by RNA-Seq. LPS treatment was associated with epigenetic changes including decreased cytosine formylation and reduced histone H3K14 and H3K23 acetylation, as well as altered expression levels of genes involved in cell adhesion, inflammation, immune response, and epigenetic regulation. These results suggest that exposure to inflammatory agents in cigarette smoke leads to early epigenetic changes in the lung, which may collaborate with genetic changes to drive the development of lung cancer.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Acetilação , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Células Cultivadas , Cromatografia Líquida de Alta Pressão , DNA/análise , DNA/isolamento & purificação , Metilação de DNA , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Espectrometria de Massas , Camundongos
13.
Elife ; 72018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30325306

RESUMO

TET enzymes convert 5-methylcytosine to 5-hydroxymethylcytosine and higher oxidized derivatives. TETs stably associate with and are post-translationally modified by the nutrient-sensing enzyme OGT, suggesting a connection between metabolism and the epigenome. Here, we show for the first time that modification by OGT enhances TET1 activity in vitro. We identify a TET1 domain that is necessary and sufficient for binding to OGT and report a point mutation that disrupts the TET1-OGT interaction. We show that this interaction is necessary for TET1 to rescue hematopoetic stem cell production in tet mutant zebrafish embryos, suggesting that OGT promotes TET1's function during development. Finally, we show that disrupting the TET1-OGT interaction in mouse embryonic stem cells changes the abundance of TET2 and 5-methylcytosine, which is accompanied by alterations in gene expression. These results link metabolism and epigenetic control, which may be relevant to the developmental and disease processes regulated by these two enzymes.


Assuntos
Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Células-Tronco Embrionárias Murinas/metabolismo , N-Acetilglucosaminiltransferases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas de Peixe-Zebra/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA/genética , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/genética , Humanos , Camundongos , Mutação , Ligação Proteica/genética , Domínios Proteicos/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
14.
Biochemistry ; 57(42): 6061-6069, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30230311

RESUMO

A precise balance of DNA methylation and demethylation is required for epigenetic control of cell identity, development, and growth. DNA methylation marks are introduced by de novo DNA methyltransferases DNMT3a/b and are maintained throughout cell divisions by DNA methyltransferase 1 (DNMT1), which adds methyl groups to hemimethylated CpG dinucleotides generated during DNA replication. Ten eleven translocation (TET) dioxygenases oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC), a process known to induce DNA demethylation and gene reactivation. In this study, we investigated the catalytic activity of human DNMT1 in the presence of oxidized forms of mC. A mass spectrometry-based assay was employed to study the kinetics of DNMT1-mediated cytosine methylation in CG dinucleotides containing C, mC, hmC, fC, or caC across from the target cytosine. Homology modeling, coupled with molecular dynamics simulations, was used to explore the structural consequences of mC oxidation with regard to the geometry of protein-DNA complexes. The DNMT1 enzymatic activity was strongly affected by the oxidation status of mC, with the catalytic efficiency decreasing in the following order: mC > hmC > fC > caC. Molecular dynamics simulations revealed that DNMT1 forms an unproductive complex with DNA duplexes containing oxidized forms of mC as a consequence of altered interactions of the target recognition domain of the protein with the C-5 substituent on cytosine. Our results provide new structural and mechanistic insight into TET-mediated DNA demethylation.


Assuntos
5-Metilcitosina/análogos & derivados , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1/química , Desmetilação do DNA , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Catálise , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Humanos , Oxirredução
15.
J Med Chem ; 58(21): 8723-33, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26492514

RESUMO

The lethal factor (LF) enzyme secreted by Bacillus anthracis is a zinc hydrolase that is chiefly responsible for anthrax-related cell death. Although many studies of the design of small molecule LF inhibitors have been conducted, no LF inhibitor is yet available as a therapeutic agent. Inhibitors with considerable chemical diversity have been developed and investigated; however, the LF S2' subsite has not yet been systematically explored as a potential target for lead optimization. Here we present synthesis, experimental evaluation, modeling, and structural biology for a novel series of sulfonamide hydroxamate LF inhibitor analogues specifically designed to extend into, and probe chemical preferences of, this S2' subsite. We discovered that this region accommodates a wide variety of chemical functionalities and that a broad selection of ligand structural modifications directed to this area can be incorporated without significant deleterious alterations in biological activity. We also identified key residues in this subsite that can potentially be targeted to improve inhibitor binding.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/química , Bacillus anthracis/enzimologia , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/química , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Alquilação , Antraz/tratamento farmacológico , Antígenos de Bactérias/metabolismo , Bacillus anthracis/química , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Inibidores Enzimáticos/química , Humanos , Ácidos Hidroxâmicos/química , Modelos Moleculares , Relação Estrutura-Atividade
16.
J Phys Chem A ; 119(41): 10316-35, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26397164

RESUMO

The atmospheric oxidation of sulfur dioxide by the parent and dimethyl Criegee intermediates (CIs) may be an important source of sulfuric acid aerosol, which has a large impact on radiative forcing and therefore upon climate. A number of computational studies have considered how the CH2OOS(O)O heteroozonide (HOZ) adduct formed in the CI + SO2 reaction converts SO2 to SO3. In this work we use the CBS-QB3 quantum chemical method along with equation-of-motion spin-flip CCSD(dT) and MCG3 theories to reveal new details regarding the formation and decomposition of the endo and exo conformers of the HOZ. Although ∼75% of the parent CI + SO2 reaction is initiated by formation of the exo HOZ, hyperconjugation preferentially stabilizes many of the endo intermediates and transition structures by 1-5 kcal mol(-1). Our quantum chemical calculations, in conjunction with statistical rate theory models, predict a rate coefficient for the parent CI + SO2 reaction of 3.68 × 10(-11) cm(3) molecule(-1) s(-1), in good agreement with recent experimental measurements. RRKM/master equation simulations based on our quantum chemical data predict a prompt carbonyl + SO3 yield of >95% for the reaction of both the parent and dimethyl CI with SO2. The existence of concerted cycloreversion transition structures 10-15 kcal mol(-1) higher in energy than the HOZ accounts for most of the predicted SO3 formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA