Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pathol Clin Res ; 8(4): 355-370, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384378

RESUMO

Basal-like breast cancer (BLBC) has a greater overlap in molecular features with high-grade serous ovarian cancer (HGSOC) than with other breast cancer subtypes. Similarities include BRCA1 mutation, high frequency of TP53 mutation, and amplification of CCNE1 (encoding the cyclin E1 protein) in 6-34% of cases, and these features can be used to group patients for targeted therapies in clinical trials. In HGSOC, we previously reported two subsets with high levels of cyclin E1: those in which CCNE1 is amplified, have intact homologous recombination (HR), and very poor prognosis; and a CCNE1 non-amplified subset, with more prevalent HR defects. Here, we investigate whether similar subsets are identifiable in BLBC that may allow alignment of patient grouping in clinical trials of agents targeting cyclin E1 overexpression. We examined cyclin E1 protein and CCNE1 amplification in a cohort of 76 BLBCs and validated the findings in additional breast cancer datasets. Compared to HGSOC, CCNE1 amplified BLBC had a lower level of amplification (3.5 versus 5.2 copies) and lower relative cyclin E1 protein, a lack of correlation of amplification with expression, and no association with polyploidy. BLBC with elevated cyclin E1 protein also had prevalent HR defects, and high-level expression of the cyclin E1 deubiquitinase ubiquitin-specific protease 28 (USP28). Using a meta-analysis across multiple studies, we determined that cyclin E1 protein overexpression but not amplification is prognostic in BLBC, while both cyclin E1 overexpression and amplification are prognostic in HGSOC. Overall CCNE1 gene amplification is not equivalent between BLBC and HGSOC. However, high cyclin E1 protein expression can co-occur with HR defects in both BLBC and HGSOC, and is associated with poor prognosis in BLBC.


Assuntos
Neoplasias da Mama , Ciclina E , Proteínas Oncogênicas , Neoplasias Ovarianas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Ciclina E/genética , Ciclina E/metabolismo , Feminino , Amplificação de Genes , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
2.
NPJ Breast Cancer ; 7(1): 111, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465787

RESUMO

Basal-like breast cancers (BLBC) are aggressive breast cancers that respond poorly to targeted therapies and chemotherapies. In order to define therapeutically targetable subsets of BLBC we examined two markers: cyclin E1 and BRCA1 loss. In high grade serous ovarian cancer (HGSOC) these markers are mutually exclusive, and define therapeutic subsets. We tested the same hypothesis for BLBC. Using a BLBC cohort enriched for BRCA1 loss, we identified convergence between BRCA1 loss and high cyclin E1 protein expression, in contrast to HGSOC in which CCNE1 amplification drives increased cyclin E1. In cell lines, BRCA1 loss was associated with stabilized cyclin E1 during the cell cycle, and BRCA1 siRNA led to increased cyclin E1 in association with reduced phospho-cyclin E1 T62. Mutation of cyclin E1 T62 to alanine increased cyclin E1 stability. We showed that tumors with high cyclin E1/BRCA1 mutation in the BLBC cohort also had decreased phospho-T62, supporting this hypothesis. Since cyclin E1/CDK2 protects cells from DNA damage and cyclin E1 is elevated in BRCA1 mutant cancers, we hypothesized that CDK2 inhibition would sensitize these cancers to PARP inhibition. CDK2 inhibition induced DNA damage and synergized with PARP inhibitors to reduce cell viability in cell lines with homologous recombination deficiency, including BRCA1 mutated cell lines. Treatment of BRCA1 mutant BLBC patient-derived xenograft models with combination PARP and CDK2 inhibition led to tumor regression and increased survival. We conclude that BRCA1 status and high cyclin E1 have potential as predictive biomarkers to dictate the therapeutic use of combination CDK inhibitors/PARP inhibitors in BLBC.

3.
Cancers (Basel) ; 12(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823571

RESUMO

Genome doubling is an underlying cause of cancer cell aneuploidy and genomic instability, but few drivers have been identified for this process. Due to their physiological roles in the genome reduplication of normal cells, we hypothesised that the oncogenes cyclins E1 and E2 may be drivers of genome doubling in cancer. We show that both cyclin E1 (CCNE1) and cyclin E2 (CCNE2) mRNA are significantly associated with high genome ploidy in breast cancers. By live cell imaging and flow cytometry, we show that cyclin E2 overexpression promotes aberrant mitosis without causing mitotic slippage, and it increases ploidy with negative feedback on the replication licensing protein, Cdt1. We demonstrate that cyclin E2 localises with core preRC (pre-replication complex) proteins (MCM2, MCM7) on the chromatin of cancer cells. Low CCNE2 is associated with improved overall survival in breast cancers, and we demonstrate that low cyclin E2 protects from excess genome rereplication. This occurs regardless of p53 status, consistent with the association of high cyclin E2 with genome doubling in both p53 null/mutant and p53 wildtype cancers. In contrast, while cyclin E1 can localise to the preRC, its downregulation does not prevent rereplication, and overexpression promotes polyploidy via mitotic slippage. Thus, in breast cancer, cyclin E2 has a strong association with genome doubling, and likely contributes to highly proliferative and genomically unstable breast cancers.

4.
Breast Cancer Res ; 22(1): 87, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787886

RESUMO

BACKGROUND: Resistance to endocrine therapy is a major clinical challenge in the management of oestrogen receptor (ER)-positive breast cancer. In this setting, p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment-resistant ER-positive breast cancer. METHODS: We used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate anti-tumour effects in p53 wildtype and p53 mutant ER-positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and endocrine-resistant ER-positive breast cancer. RESULTS: We demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant-resistant patient-derived xenograft model. CONCLUSIONS: We conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine-resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programmes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fulvestranto/administração & dosagem , Humanos , Isoquinolinas/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Biochem Cell Biol ; 43(3): 295-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20974278

RESUMO

Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle). MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal. MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete disassembly of the adult NMJ.


Assuntos
Microdomínios da Membrana/metabolismo , Músculos/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Membranas Sinápticas/metabolismo , Animais , Doenças Autoimunes/enzimologia , Humanos , Especificidade de Órgãos , Receptores Proteína Tirosina Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA