Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Syst ; 15(5): 425-444.e9, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703772

RESUMO

The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.


Assuntos
Placenta , Análise de Célula Única , Humanos , Feminino , Gravidez , Placenta/microbiologia , Placenta/imunologia , Análise de Célula Única/métodos , Plasmodium falciparum , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/fisiologia , Toxoplasma/patogenicidade , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Inflamação
2.
Nat Commun ; 13(1): 6206, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266286

RESUMO

Aging normal human oesophagus accumulates TP53 mutant clones. These are the origin of most oesophageal squamous carcinomas, in which biallelic TP53 disruption is almost universal. However, how p53 mutant clones expand and contribute to cancer development is unclear. Here we show that inducing the p53R245W mutant in single oesophageal progenitor cells in transgenic mice confers a proliferative advantage and clonal expansion but does not disrupt normal epithelial structure. Loss of the remaining p53 allele in mutant cells results in genomically unstable p53R245W/null epithelium with giant polyaneuploid cells and copy number altered clones. In carcinogenesis, p53 mutation does not initiate tumour formation, but tumours developing from areas with p53 mutation and LOH are larger and show extensive chromosomal instability compared to lesions arising in wild type epithelium. We conclude that p53 has distinct functions at different stages of carcinogenesis and that LOH within p53 mutant clones in normal epithelium is a critical step in malignant transformation.


Assuntos
Carcinogênese , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Carcinogênese/genética , Células Clonais , Esôfago , Camundongos Transgênicos , Instabilidade Cromossômica , Mutação
3.
Cancer Discov ; 11(2): 340-361, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33087317

RESUMO

Skin cancer risk varies substantially across the body, yet how this relates to the mutations found in normal skin is unknown. Here we mapped mutant clones in skin from high- and low-risk sites. The density of mutations varied by location. The prevalence of NOTCH1 and FAT1 mutations in forearm, trunk, and leg skin was similar to that in keratinocyte cancers. Most mutations were caused by ultraviolet light, but mutational signature analysis suggested differences in DNA-repair processes between sites. Eleven mutant genes were under positive selection, with TP53 preferentially selected in the head and FAT1 in the leg. Fine-scale mapping revealed 10% of clones had copy-number alterations. Analysis of hair follicles showed mutations in the upper follicle resembled adjacent skin, but the lower follicle was sparsely mutated. Normal skin is a dense patchwork of mutant clones arising from competitive selection that varies by location. SIGNIFICANCE: Mapping mutant clones across the body reveals normal skin is a dense patchwork of mutant cells. The variation in cancer risk between sites substantially exceeds that in mutant clone density. More generally, mutant genes cannot be assigned as cancer drivers until their prevalence in normal tissue is known.See related commentary by De Dominici and DeGregori, p. 227.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Neoplasias Cutâneas/genética , Adulto , Idoso , Caderinas/genética , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/patologia , Células Clonais , Feminino , Antebraço , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Mutação , Receptor Notch1/genética , Neoplasias Cutâneas/patologia , Tórax
4.
Nat Commun ; 11(1): 1429, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188860

RESUMO

In adult skin epidermis and the epithelium lining the esophagus cells are constantly shed from the tissue surface and replaced by cell division. Tracking genetically labelled cells in transgenic mice has given insight into cell behavior, but conflicting models appear consistent with the results. Here, we use an additional transgenic assay to follow cell division in mouse esophagus and the epidermis at multiple body sites. We find that proliferating cells divide at a similar rate, and place bounds on the distribution cell cycle times. By including these results in a common analytic approach, we show that data from eight lineage tracing experiments is consistent with tissue maintenance by a single population of proliferating cells. The outcome of a given cell division is unpredictable but, on average, the likelihood of producing proliferating and differentiating cells is equal, ensuring cellular homeostasis. These findings are key to understanding squamous epithelial homeostasis and carcinogenesis.


Assuntos
Epiderme/crescimento & desenvolvimento , Esôfago/citologia , Células-Tronco/citologia , Animais , Ciclo Celular , Divisão Celular , Proliferação de Células , Esôfago/crescimento & desenvolvimento , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Cell Stem Cell ; 25(3): 329-341.e6, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31327664

RESUMO

As humans age, normal tissues, such as the esophageal epithelium, become a patchwork of mutant clones. Some mutations are under positive selection, conferring a competitive advantage over wild-type cells. We speculated that altering the selective pressure on mutant cell populations may cause them to expand or contract. We tested this hypothesis by examining the effect of oxidative stress from low-dose ionizing radiation (LDIR) on wild-type and p53 mutant cells in the transgenic mouse esophagus. We found that LDIR drives wild-type cells to stop proliferating and differentiate. p53 mutant cells are insensitive to LDIR and outcompete wild-type cells following exposure. Remarkably, combining antioxidant treatment and LDIR reverses this effect, promoting wild-type cell proliferation and p53 mutant differentiation, reducing the p53 mutant population. Thus, p53-mutant cells can be depleted from the normal esophagus by redox manipulation, showing that external interventions may be used to alter the mutational landscape of an aging tissue.


Assuntos
Envelhecimento/fisiologia , Células Epiteliais/fisiologia , Esôfago/fisiologia , Receptores de Estrogênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Antioxidantes , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo , Radiação Ionizante , Receptores de Estrogênio/genética , Proteína Supressora de Tumor p53/genética
6.
EMBO Rep ; 19(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30126925

RESUMO

The Myc family of oncogenic transcription factors regulates myriad cellular functions. Myc proteins contain a basic region/helix-loop-helix/leucine zipper domain that mediates DNA binding and heterodimerization with its partner Max. Among the Myc proteins, c-Myc is the most widely expressed and relevant in primary B lymphocytes. There is evidence suggesting that c-Myc can perform some of its functions in the absence of Max in different cellular contexts. However, the functional in vivo interplay between c-Myc and Max during B lymphocyte differentiation is not well understood. Using in vivo and ex vivo models, we show that while c-Myc requires Max in primary B lymphocytes, several key biological processes, such as cell differentiation and DNA replication, can initially progress without the formation of c-Myc/Max heterodimers. We also describe that B lymphocytes lacking Myc, Max, or both show upregulation of signaling pathways associated with the B-cell receptor. These data suggest that c-Myc/Max heterodimers are not essential for the initiation of a subset of important biological processes in B lymphocytes, but are required for fine-tuning the initial response after activation.


Assuntos
Linfócitos B/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-myc/genética , Sequência de Aminoácidos/genética , Animais , Linfócitos B/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Sequências Hélice-Alça-Hélice/genética , Humanos , Zíper de Leucina/genética , Camundongos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-myc/química , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA