Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Hazard Mater ; 479: 135678, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39217946

RESUMO

PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.

3.
Environ Sci Pollut Res Int ; 31(26): 38358-38366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801611

RESUMO

Concentrations of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) were analyzed and investigated in surficial sediment collected in 2018 from ten different nearshore sites in Lake Ontario and the St. Lawrence River influenced by inputs from varying urban and historical land uses. Sites were grouped into two categories of tributary and lake according to their location. Results show that tributary sites had higher concentrations of total chlorinated paraffin (CP) than lake sites. Humber Bay, a lake site, had the highest total CP concentration (55,000 ng/gTOC) followed by Humber River, a tributary site (50,000 ng/gTOC). The lowest concentrations were found in eastern Lake Ontario and Lake St. Francis in the St. Lawrence River (540 ng/gTOC). Higher concentrations of chlorinated paraffins (CPs) were found where runoff and wastewater inputs from urban areas, current industrial activities, and population were the greatest. Levels of MCCPs were higher than SCCPs at all sites but one, Lake St. Francis. Among the SCCPs, C13 and among the MCCPs C14 were the dominant chain length alkanes, with C14 being the highest among both groups. The SCCPs and MCCPs profiles suggest that they can be used to distinguish between sites impacted by local sources vs. sites impacted by short-/long-range transport of these chemicals.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Parafina , Poluentes Químicos da Água , Lagos/química , Parafina/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Ontário , Hidrocarbonetos Clorados/análise
4.
Environ Sci Process Impacts ; 26(4): 657-666, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38312055

RESUMO

We discovered high concentrations of PFAS (18.53 ± 1.5 µg kg-1) in yard waste compost, a compost type widely acceptable to the public. Seventeen out of forty targeted PFAS, belonging to six PFAS classes were detected in yard waste compost, with PFCAs (13.51 ± 0.99 µg kg-1) and PFSAs (4.13 ± 0.19 µg kg-1) being the dominant classes, comprising approximately 72.5% and 22.1% of the total measured PFAS. Both short-chain PFAS, such as PFBA, PFHxA, and PFBS, and long-chain PFAS, such as PFOA and PFOS, were prevalent in all the tested yard waste compost samples. We also discovered the co-occurrence of PFAS with low-density polyethylene (LDPE) and polyethylene terephthalate (PET) plastics. Total PFAS concentrations in LDPE and PET separated from incoming yard waste were 7.41 ± 0.41 µg kg-1 and 1.35 ± 0.1 µg kg-1, which increased to 8.66 ± 0.81 µg kg-1 in LDPE and 5.44 ± 0.56 µg kg-1 in PET separated from compost. An idle mature compost pile revealed a clear vertical distribution of PFAS, with the total PFAS concentrations at the surface level approximately 58.9-63.2% lower than the 2 ft level. This difference might be attributed to the volatile loss of short-chain PFCAs, PFAS's downward movement with moisture, and aerobic transformations of precursor PFAS at the surface.


Assuntos
Compostagem , Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Poluentes do Solo/análise , Polietilenotereftalatos
5.
Environ Sci Technol Lett ; 10(2): 198-203, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37034438

RESUMO

Studies on the destruction of solid per- and polyfluoroalkyl substances (PFAS) chemicals and PFAS-laden solid wastes significantly lag behind the urgent social demand. There is a great need to develop novel treatment processes that can destroy nonaqueous PFAS at ambient temperatures and pressures. In this study, we develop a piezoelectric-material-assisted ball milling (PZM-BM) process built on the principle that ball collisions during milling can activate PZMs to generate ∼kV potentials for PFAS destruction in the absence of solvents. Using boron nitride (BN), a typical PZM, as an example, we successfully demonstrate the complete destruction and near-quantitative (∼100%) defluorination of solid PFOS and perfluorooctanoic acid (PFOA) after a 2 h treatment. This process was also used to treat PFAS-contaminated sediment. Approximately 80% of 21 targeted PFAS were destroyed after 6 h of treatment. The reaction mechanisms were determined to be a combination of piezo-electrochemical oxidation of PFAS and fluorination of BN. The PZM-BM process demonstrates many potential advantages, as the degradation of diverse PFAS is independent of functional group and chain configurations and does not require caustic chemicals, heating, or pressurization. This pioneering study lays the groundwork for optimizing PZM-BM to treat various PFAS-laden solid wastes.

6.
Sci Total Environ ; 875: 162337, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848995

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a diverse family of industrially significant synthetic chemicals infamous for extreme environmental persistence and global environmental distribution. Many PFAS are bioaccumulative and biologically active mainly due to their tendency to bind with various proteins. These protein interactions are important in determining the accumulation potential and tissue distribution of individual PFAS. Trophodynamics studies including aquatic food webs present inconsistent evidence for PFAS biomagnification. This study strives to identify whether the observed variability in PFAS bioaccumulation potential among species could correspond with interspecies protein composition differences. Specifically, this work compares the perfluorooctane sulfonate (PFOS) serum protein binding potential and the tissue distribution of ten perfluoroalkyl acids (PFAAs) detected in alewife (Alosa pseudoharengus), deepwater sculpin (Myoxocephalus thompsonii), and lake trout (Salvelinus namaycush) of the Lake Ontario aquatic piscivorous food web. These three fish sera and fetal bovine reference serum all had unique total serum protein concentrations. Serum protein-PFOS binding experiments showed divergent patterns between fetal bovine serum and fish sera, suggesting potentially two different PFOS binding mechanisms. To identify interspecies differences in PFAS-binding serum proteins, fish sera were pre-equilibrated with PFOS, fractionated by serial molecular weight cut-off filter fractionation, followed by liquid chromatography-tandem mass spectrometry analysis of the tryptic protein digests and the PFOS extracts of each fraction. This workflow identified similar serum proteins for all fish species. However, serum albumin was only identified in lake trout, suggesting apolipoproteins are likely the primary PFAA transporters in alewife and deepwater sculpin sera. PFAA tissue distribution analysis provided supporting evidence for interspecies variations in lipid transport and storage, which may also contribute to the varied PFAA accumulation in these species. Proteomics data are available via ProteomeXchange with identifier PXD039145.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Proteoma/metabolismo , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes/metabolismo , Fluorocarbonos/análise , Ácidos Alcanossulfônicos/análise
7.
Environ Pollut ; 317: 120677, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36400140

RESUMO

The bioaccumulation and biomagnification of perfluoroalkyl substances (PFAS) in the Lake Erie food web was investigated by analyzing surface water and biological samples including 10 taxa of fish species, 2 taxa of benthos and zooplankton. The carbon (δ13C) and nitrogen (δ15N) isotopic composition and fatty acids profiles of biological samples were used to evaluate the food web structure and assess the biomagnification of PFAS. Perfluorooctane sulfonate (PFOS) dominated the total PFAS (ΣPFAS) concentration (50-90% of ΣPFAS concentration), followed by C9-C11 perfluorinated carboxylic acids (PFCAs). The highest PFOS concentrations (79 ± 4.8 ng/g, wet weight (wwt)) and ΣPFAS (88 ± 5.2 ng/g, wwt) were detected in yellow perch (Perca flavescens). The C8-C14 PFAS biomagnification factors (BMFs) between apex piscivorous fish and prey fish were found to be generally greater than 1, indicative of PFAS biomagnification, while biodilution (BMF<1) was observed between planktivorous fish and zooplankton. Trophic magnification factors (TMFs) of C8-C14 PFCA were not correlated with perfluoroalkyl chain length. The C4-C9 PFAS were detected in the surface water of Lake Erie, and PFBA was found to have the highest concentrations (2.1-2.8 ng/L) among all PFAS detected. The log of bioaccumulation factor (BAF) was found to generally increase with increasing log Kow for C6, 8, and 9 PFAS in all selected species from three tropic levels.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Percas , Poluentes Químicos da Água , Animais , Lagos , Bioacumulação , Cadeia Alimentar , Monitoramento Ambiental , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Água , Ácidos Alcanossulfônicos/análise , Zooplâncton
8.
Environ Sci Technol ; 56(24): 17626-17634, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36468978

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are globally distributed in the natural environment, and their persistent and bioaccumulative potential illicit public concern. The production of certain PFAS has been halted or controlled by regulation due to their adverse effect on the health of humans and wildlife. However, new PFAS are continuously developed as alternatives to legacy PFAS. Additionally, many precursors are unknown, and their metabolites have not been assessed. To better understand the PFAS profiles in the Lake Ontario (LO) aquatic food web, a quadrupole time-of-flight mass spectrometer (QToF) coupled to ultrahigh-performance liquid chromatography (UPLC) was used to generate high-resolution mass spectra (HRMS) from sample extracts. The HRMS data files were analyzed using an isotopic profile deconvoluted chromatogram (IPDC) algorithm to isolate PFAS profiles in aquatic organisms. Fourteen legacy PFAAs (C5-C14) and 15 known precursors were detected in the LO food web. In addition, over 400 unknown PFAS features that appear to biomagnify in the LO food web were found. Profundal benthic organisms, deepwater sculpin(Myoxocephalus thompsonii), and Mysis were found to have more known precursors than other species in the food web, suggesting that there is a large reservoir of fluorinated substances in the benthic zone.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Ontário , Lagos/análise , Cadeia Alimentar , Fluorocarbonos/análise , Cromatografia Líquida , Poluentes Químicos da Água/análise
9.
Toxics ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893851

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are a major priority for many federal and state regulatory agencies charged with monitoring levels of emerging contaminants in environmental media and setting health-protective benchmarks to guide risk assessments. While screening levels and toxicity reference values have been developed for numerous individual PFAS compounds, there remain important data gaps regarding the mode of action for toxicity of PFAS mixtures. The present study aims to contribute whole-mixture toxicity data and advance the methods for evaluating mixtures of two key components of aqueous film-forming foams: perfluorooctanesulfonic acid (PFOS), and 6:2 fluorotelomer sulfonic acid (6:2 FTS). Wildtype (AB) zebrafish embryos were exposed to PFOS and 6:2 FTS, both as individual components and as binary mixtures, from 2 to 122 h post-fertilization. Five treatment levels were selected to encompass environmentally relevant exposure levels. Experimental endpoints consisted of mortality, hatching, and developmental endpoints, including swim bladder inflation, yolk sac area, and larval body length. Results from dose-response analysis indicate that the assumption of additivity using conventional points of departure (e.g., NOAEL, LOAEL) is not supported for critical effect endpoints with these PFAS mixtures, and that the interactions vary as a function of the dose range. Alternative methods for quantifying relative potency are proposed, and recommendations for additional investigations are provided to further advance assessments of the toxicity of PFAS mixtures to aquatic organisms.

10.
Sci Total Environ ; 819: 152974, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007599

RESUMO

Polyfluoroalkyl substances (PFAS) are a group of fluorinated organic chemicals that have been produced for industrial and commercial application since the 1950s. PFAS are highly persistent and ubiquitous in water, sediment, and biota. Toxic effects of PFAS on humans and the ecosystem have increased scientific and public concern. To better understand the distribution of PFAS in the Laurentian Great Lakes, carbon (12C and 13C) and nitrogen (14N and 15N) stable isotope enrichment, fatty acid profiles, and PFAS were measured in the Lake Huron (LH) aquatic food web. The trophic level of the organisms was estimated using δ15N and found to be a determinant of PFAS biomagnification. The δ13C and fatty acid profiles were used to assess the carbon/energy flow pathway and predator-prey relationships, respectively. The δ13C, δ15N, and fatty acids were used to elucidate the trophodynamics and understand the PFAS trophic transfer in the LH aquatic food web. Perfluorooctanesulfonic acid (PFOS) was the dominant PFAS observed, followed by C9 - C11 perfluorinated carboxylic acids (PFCA). The highest PFOS concentrations (45 ± 11 ng/g, wet weight (wwt)) were detected in lake trout (Salvelinus namaycush), while the highest total PFCA concentrations (sum of C4 - C16 PFCAs) were detected in deepwater sculpin (Myoxocephalus thompsonii). With the exception of perfluorooctanoic acid (PFOA), C8-C14 PFAS biomagnification factors (BMFs) were found to be generally greater than 1, suggesting PFAS biomagnification from prey to predator. Trophic magnification factors (TMFs) of C8-C14 PFCA were found to be independent of compound hydrophobicity.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Cadeia Alimentar , Lagos/química , Poluentes Químicos da Água/análise
11.
Radiol Artif Intell ; 3(6): e200278, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34870214

RESUMO

PURPOSE: To evaluate two settings (noise reduction of 50% or 75%) of a deep learning (DL) reconstruction model relative to each other and to conventional MR image reconstructions on clinical orthopedic MRI datasets. MATERIALS AND METHODS: This retrospective study included 54 patients who underwent two-dimensional fast spin-echo MRI for hip (n = 22; mean age, 44 years ± 13 [standard deviation]; nine men) or shoulder (n = 32; mean age, 56 years ± 17; 17 men) conditions between March 2019 and June 2020. MR images were reconstructed with conventional methods and the vendor-provided and commercially available DL model applied with 50% and 75% noise reduction settings (DL 50 and DL 75, respectively). Quantitative analytics, including relative anatomic edge sharpness, relative signal-to-noise ratio (rSNR), and relative contrast-to-noise ratio (rCNR) were computed for each dataset. In addition, the image sets were randomized, blinded, and presented to three board-certified musculoskeletal radiologists for ranking based on overall image quality and diagnostic confidence. Statistical analysis was performed with a nonparametric hypothesis comparing derived quantitative metrics from each reconstruction approach. In addition, inter- and intrarater agreement analysis was performed on the radiologists' rankings. RESULTS: Both denoising settings of the DL reconstruction showed improved edge sharpness, rSNR, and rCNR relative to the conventional reconstructions. The reader rankings demonstrated strong agreement, with both DL reconstructions outperforming the conventional approach (Gwet agreement coefficient = 0.98). However, there was lower agreement between the readers on which DL reconstruction denoising setting produced higher-quality images (Gwet agreement coefficient = 0.31 for DL 50 and 0.35 for DL 75). CONCLUSION: The vendor-provided DL MRI reconstruction showed higher edge sharpness, rSNR, and rCNR in comparison with conventional methods; however, optimal levels of denoising may need to be further assessed.Keywords: MRI Reconstruction Method, Deep Learning, Image Analysis, Signal-to-Noise Ratio, MR-Imaging, Neural Networks, Hip, Shoulder, Physics, Observer Performance, Technology Assessment Supplemental material is available for this article. © RSNA, 2021.

12.
Environ Sci Technol ; 55(24): 16390-16401, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846854

RESUMO

Halogenated organic compounds (HOCs) in marine species collected from the Atlantic Ocean [3 shortfin mako (Isurus oxyrinchus) and 1 porbeagle (Lamna nasus)], and 12 sea turtles collected from the Pacific Ocean [3 loggerhead (Caretta caretta), 3 green (Chelonia mydas), 3 olive ridley (Lepidochelys olivacea), and 3 hawksbill (Eretmochelys imbricata)] were analyzed with a nontargeted analytical method using two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Sharks and sea turtles had distinct HOC profiles. Halogenated methoxyphenols (halo-MeOPs) were the most abundant compound class identified in sea turtle livers, while polychlorinated biphenyls (PCBs) were the most abundant in shark livers. In addition to legacy contaminants and halo-MeOPs, a total of 110 nontargeted/novel HOCs (NHOCs) were observed in the shark livers. Shortfin mako collected from the northern Gulf of Mexico contained the largest number (89) and most diverse structural classes of NHOCs. Among all NHOCs, a group of compounds with the elemental composition C14H12-nCln (n = 5-8) exhibited the highest concentrations, followed by chlorocarbazoles and tris(chlorophenyl) methanes (TCPMs). Using nontargeted workflows, a variety of known and unknown HOCs were observed, which demonstrate the need to develop more complete chemical profiles in the marine environment.


Assuntos
Bifenilos Policlorados , Tubarões , Tartarugas , Animais , Oceano Atlântico , Compostos Orgânicos
13.
Environ Sci Technol ; 55(22): 15162-15171, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34714637

RESUMO

Harmful per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in aquatic environments, but their remediation remains challenging. Metal-organic frameworks (MOFs) have been recently identified as an advanced material class for the efficient removal of PFAS, but little is known about the fundamentals of the PFAS@MOF adsorption process. To address this knowledge gap, we evaluated the performance of 3 different MOFs for the removal of 8 PFAS classes from aqueous film-forming foam-impacted groundwater samples obtained from 11 U.S. Air Force installations. Due to their different pore sizes/shapes and the identity of metal node, MOFs NU-1000, UiO-66, and ZIF-8 were selected to investigate the role of MOF structures, PFAS properties, and water matrix on the PFAS@MOF adsorption process. We observed that PFAS@MOF adsorption is (i) dominated by electrostatic and acid-base interactions for anionic and non-ionic PFAS, respectively, (ii) preferred for long- over short-chain PFAS, (iii) strongly dependent on the nature of PFAS head group functionality, and (iv) compromised in the presence of ionic and neutral co-contaminants by competing for ion-exchange sites and PFAS binding. With this study, we elucidate the PFAS@MOF adsorption mechanism from complex water sources to guide the design of more efficient MOFs for the treatment of PFAS-contaminated water bodies.


Assuntos
Fluorocarbonos , Água Subterrânea , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
14.
Sci Total Environ ; 778: 146151, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711592

RESUMO

This work presents the first assessment of temporal trends (2005-2016) for perfluoroalkyl acids (PFAAs) in top predator fish of the Laurentian Great Lakes except Lake Ontario, for which we provide a post-2008 update. Lake trout (Salvelinus namaycush) or walleye (Sander vitreus; Lake Erie only) collected annually from 2005 to 2016 were analyzed for 12 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkyl sulfonic acids (PFSAs) with carbon chain lengths between 4 and 16 (C4-C16). Individual analyte concentrations generally decreased in fish basin-wide between 2005 and 2016, including Lake Ontario lake trout previously found to lack declining PFAA concentrations up until 2008. Declining fish PFAA burden reflects a positive response to the industrial phase-outs of these chemicals. Notable exceptions to this general decline included most analytes in lake trout collected from Lake Superior near Keweenaw Point and C6 and C8 PFSAs and C9 PFCAs in Lake Erie lake trout and walleye, which exhibited constant or increasing concentrations in recent years. Recent increases in Lake Superior shoreline development and mobilization from increased sediment resuspension and contamination from biosolids-amended agricultural soils in the Lake Erie watershed are plausible explanations for these cases. However, data scarcity prohibits confirmation of these suspected causes. The lingering lack of declining concentrations noted in this study together with the ongoing evolution of the fluorinated chemical industry emphasize the vigilance needed to better understand how past and future emissions will affect the Great Lakes and global ecosystems.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Fluorocarbonos/análise , Great Lakes Region , Lagos , Ontário , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 55(6): 3765-3774, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33646760

RESUMO

Sport fish fillets and human sera (fish consumers) were collected in the Lake Superior and Lake Michigan basin and screened for novel contaminants using the isotopic profile deconvoluted chromatogram (IPDC) algorithm. The IPDC algorithm was extended beyond traditional Cl/Br filters to detect additional potential bioaccumulative and toxic (PBT) such as perfluoroalkyl substances (PFAS). The IPDC algorithm screened for approximately 13.5 million theoretical molecular formulas. Additional algorithm modules were developed to detect data independent MS/MS fragmentation products and a retention time index calculator using a series of 13C-labeled perfluoroalkyl carboxylic acids (13C-PFCAs). Ten potential compound classes were isolated including six untargeted PFAS, six homologue groups of polyfluorinated carboxylic acids, polyfluorinated telomer alcohols (PoFTOHs), two hydroxylated polychlorobiphenyls, pesticides, herbicides, antifungals, pharmaceuticals, artificial sweeteners, and personal care products with minimal postprocessing efforts. The algorithm isolated 48 ubiquitous PoFTOHs in both fish fillet and serum of fish consumers suggesting a region wide distribution of this class of compounds. The 3, 4, and 7 fluorine substituted PoFTOH were the most abundant congeners in both biological matrices.


Assuntos
Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Great Lakes Region , Humanos , Lagos , Michigan , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 54(23): 15035-15045, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33167618

RESUMO

Fish have been used for decades as bioindicators for assessing toxic contaminants in the Great Lakes ecosystem. Routine environmental monitoring programs target predetermined compounds that do not reflect the complete exposure of chemicals to biota and do not provide the complete halogenated fingerprint of the biota. In the current work, a nontargeted screening method was developed using a two-dimensional gas chromatograph coupled to a high-resolution time-of-flight mass spectrometer and was applied to 149 edible fish fillets from different species in the Great Lakes to characterize a more robust set of halogenated organic compounds across species and among lakes. Lake Ontario had the largest number of novel halogenated organic compounds (NHOCs). Seven NHOCs were observed in species from all lakes, indicating that this regional signature was not species-dependent. Hierarchical cluster analysis showed identical NHOC profiles between bottom dwelling and pelagic species. The NHOCs were grouped into seven clusters with similar structures and potentially similar environmental behaviors. Seven of the 29 NHOCs likely containing methoxy or ethoxy groups on a benzene or benzene-methanol backbone were clustered into one group with similar retention times. Five NHOCs were clustered with legacy contaminants that likely have similar structures or are their degradation products.


Assuntos
Lagos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Great Lakes Region , Ontário , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 54(22): 14352-14360, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33103889

RESUMO

Legacy halogenated contaminants have been monitored in the Great Lakes for decades, but there are many additional unknown halogenated contaminants potentially affecting the Great Lakes ecosystem. To address this concern, lake trout (Salvelinus namaycush) were collected in 2005/2006 and 2015/2016 from each lake and screened for previously unidentified compounds. The isotopic profile deconvoluted chromatogram algorithm was used to isolate unknown halogenated components using high-resolution mass spectrometry data files generated by an atmospheric pressure gas chromatography-quadrupole time-of-flight mass spectrometer operated in positive and negative modes. The temporal and spatial differences in the newly detected features were used to isolate new potential contaminants. Decadal differences in the unknown halogenated compounds (or features) were compared with the total polychlorinated biphenyl concentration trends. Greater than 2000 unknown halogenated features were detected. As expected, Lake Superior contained the lowest number of unknown halogenated features, whereas Lake Ontario contained the highest. Unknown features tended to have fewer Cl and/or Br atoms compared to traditional legacy contaminant features typically monitored. Diverse patterns of unknown halogenated compounds between lakes suggested that there continues to be unidentified sources of halogenated contaminants in the Great Lakes missed by current monitoring programs.


Assuntos
Lagos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Great Lakes Region , Ontário , Poluentes Químicos da Água/análise
18.
Environ Sci Technol ; 54(10): 6134-6141, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32298100

RESUMO

Hexabromocyclododecane (HBCDD) is a hazardous, persistent, bioaccumlative brominated flame retardant. To investigate how its use has affected the Great Lakes, total HBCDD (∑HBCDD) concentrations and temporal trends in homogenized whole fish samples from the Great Lakes region (1978 to 2016) were determined. ∑HBCDD concentrations (ng/g ww) for each lake are Erie (0.49-2.60), Ontario (3.12-8.90), Michigan (3.91-9.01), Superior (5.69-13.1), and Huron (5.57-13.7). Early years (1978 to 1992) showed no significant trend. However, recent trends (2004 to 2016) suggest concentrations are increasing in Lakes Erie and Ontario, decreasing in Lakes Superior and Michigan, and not changing in Lake Huron. Decreasing trends for Lakes Superior and Michigan are likely the result of decreased usage of the compound globally, regionally, and locally. For the other lakes, increasing or zero trends are consistent with food web changes due to invasive species and climate change, which has caused more intense storms and less ice cover leading to increased sediment resuspension.


Assuntos
Lagos , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Great Lakes Region , Hidrocarbonetos Bromados , Michigan , Ontário , Truta
19.
Anal Chem ; 91(24): 15509-15517, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31743003

RESUMO

An isotopic profile matching algorithm, the isotopic profile deconvoluted chromatogram (IPDC), was developed to screen for a wide variety of organic compounds in high-resolution mass spectrometry (HRMS) data acquired from instruments with resolution power as low as 22 000 fwhm. The algorithm initiates the screening process by generating a series of C/Br/Cl/S isotopic patterns consistent with the profiles of approximately 3 million molecular formulas for compounds with potentially persistent, bioaccumulative, and toxic (PBT) properties. To evaluate this algorithm, HRMS data were screened using these seed profiles to isolate relevant chlorinated and/or brominated compounds. Data reduction techniques included mass defect filtering and retention time prediction from estimated boiling points predicted using molecular formulas and reasonable elemental conformations. A machine learning classifier was also developed using spectrometric and chromatographic variables to minimize false positives. A scoring system was developed to rank candidate molecular formulas for an isotopic feature. The IPDC algorithm was applied to a Lake Michigan lake trout extract analyzed by atmospheric pressure gas chromatography-quadrupole time-of-flight (APGC-QToF) mass spectrometry in positive and negative modes. The IPDC algorithm detected isotopic features associated with legacy contaminants and a series of unknown halogenated features. The IPDC algorithm resolved 313 and 855 halogenated features in positive and negative modes, respectively, in Lake Michigan lake trout.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Isótopos , Truta , Algoritmos , Animais , Automação , Compostos Orgânicos
20.
Environ Sci Technol ; 53(5): 2731-2738, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768259

RESUMO

Byproducts produced when treating perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in water using a plasma treatment process intentionally operated to treat these compounds slowly to allow for byproduct accumulation were quantified. Several linear chain perfluoroalkyl carboxylic acids (PFCAs) (C4 to C7) were identified as byproducts of both PFOA and PFOS treatment. PFOA, perfluorohexanesulfonate (PFHxS), and perfluorobutanesulfonate (PFBS) were also found to be byproducts from PFOS degradation. Significant concentrations of fluoride ions, inorganic carbon, and smaller organic acids (trifluoroacetic acid, acetic acid, and formic acid) were also identified. In addition to PFCAs, PFHxS, and PFBS, trace amounts of 43 PFOA-related and 35 PFOS-related byproducts were also identified using a screening and search-based algorithm. Minor concentrations of gas-phase byproducts were also identified (<2.5% of the F originally associated with the parent molecules) some of which are reported for the first time in perfluoroalkyl substance degradation experiments including cyclic perfluoroalkanes (C4F8, C5F10, C6F12, C7F14, and C8F16). The short chain PFCAs detected suggest the occurrence of a stepwise reduction of the parent perfluoroalkyl substances (PFAS) molecule, followed by oxidation of intermediates, perfluoroalkyl radicals, and perfluoro alcohols/ketones. Using a fluorine mass balance, 77% of the fluorine associated with the parent PFOA and 58% of the fluorine associated with the parent PFOS were identified. The bulk of the remaining fluorine was determined to be sorbed to reactor walls and tubing using sorption experiments in which plasma was not generated.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Caprilatos , Ácidos Carboxílicos , Flúor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA