Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Med Genet A ; 152A(9): 2176-84, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20683980

RESUMO

Noonan syndrome is a genetic condition characterized by congenital heart defects, short stature, and characteristic facial features. Familial or de novo mutations in PTPN11, RAF1, SOS1, KRAS, and NRAS are responsible for 60-75% of the cases, thus, additional genes are expected to be involved in the pathogenesis. In addition, the genotype-phenotype correlation has been hindered by the highly variable expressivity of the disease. For all these reasons, expanding the genotyped and clinically evaluated case numbers will benefit the clinical community. A mutation analysis has been performed on RAF1, SOS1, and GRB2, in 24 patients previously found to be negative for PTPN11 and KRAS mutations. We identified four mutations in SOS1 and one in RAF1, while no GRB2 variants have been found. Interestingly, the RAF1 mutation was present in a patient also carrying a newly identified p.R497Q familial SOS1 mutation, segregating with a typical Noonan Syndrome SOS1 cutaneous phenotype. Functional analysis demonstrated that the R497Q SOS1 mutation leads to Jnk activation, but has no effect on the Ras effector Erk1. We propose that this variant might contribute to the onset of the peculiar ectodermal traits displayed by the propositus amidst the more classical Noonan syndrome presentation. To our knowledge, this is the first reported case of a patient harboring mutations in two genes, with an involvement of both Ras and Rac1 pathways, indicating that SOS1 may have a role of modifier gene that might contribute the variable expressivity of the disease, evidencing a genotype-phenotype correlation in the family.


Assuntos
Proteína Adaptadora GRB2/genética , Mutação de Sentido Incorreto , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-raf/genética , Proteína SOS1/genética , Análise Mutacional de DNA , Família , Genótipo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas ras
2.
Eur J Hum Genet ; 17(5): 611-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19092779

RESUMO

Genomic imprinting is an epigenetic phenomenon restricting gene expression in a manner dependent on parent of origin. Imprinted gene products are critical regulators of growth and development, and imprinting disorders are associated with both genetic and epigenetic mutations, including disruption of DNA methylation within the imprinting control regions (ICRs) of these genes. It was recently reported that some patients with imprinting disorders have a more generalised imprinting defect, with hypomethylation at a range of maternally methylated ICRs. We report a cohort of 149 patients with a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS), including 81 with maternal hypomethylation of the KCNQ1OT1 ICR. Methylation analysis of 11 ICRs in these patients showed that hypomethylation affecting multiple imprinted loci was restricted to 17 patients with hypomethylation of the KCNQ1OT1 ICR, and involved only maternally methylated loci. Both partial and complete hypomethylation was demonstrated in these cases, suggesting a possible postzygotic origin of a mosaic imprinting error. Some ICRs, including the PLAGL1 and GNAS/NESPAS ICRs implicated in the aetiology of transient neonatal diabetes and pseudohypoparathyroidism type 1b, respectively, were more frequently affected than others. Although we did not find any evidence for mutation of the candidate gene DNMT3L, these results support the hypotheses that trans-acting factors affect the somatic maintenance of imprinting at multiple maternally methylated loci and that the clinical presentation of these complex cases may reflect the loci and tissues affected with the epigenetic abnormalities.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Proteínas de Ciclo Celular/genética , Metilação de DNA , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Síndrome de Beckwith-Wiedemann/patologia , Cromograninas , DNA (Citosina-5-)-Metiltransferases/genética , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo Genético
3.
Hum Mol Genet ; 16(3): 254-64, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17158821

RESUMO

The imprinted expression of the IGF2 and H19 genes is controlled by the Imprinting Centre 1 (IC1) at chromosome 11p15.5. This is a methylation-sensitive chromatin insulator that works by binding the zinc-finger protein CTCF in a parent-specific manner. Microdeletions abolishing some of the CTCF target sites (CTSs) of IC1 have been associated with the Beckwith-Wiedemann syndrome (BWS). However, the link between these mutations and the molecular and clinical phenotypes was debated. We have identified two novel families with IC1 deletions, in which individuals with the clinical features of the BWS are present in multiple generations. By analysing the methylation pattern at the IGF2-H19 locus together with the clinical phenotypes in the individuals with maternal and those with paternal transmission of five different deletions, we demonstrate that maternal transmission of 1.4-1.8 kb deletions in the IC1 region co-segregates with the hypermethylation of the residual CTSs and BWS phenotype with complete penetrance, whereas normal phenotype is observed upon paternal transmission. Although gene expression could not be assayed in all cases, the methylation detected at the IGF2 DMR2 and H19 promoter suggests that IC1 hypermethylation is consistently associated with biallelic activation of IGF2 and biallelic silencing of H19. Comparison of these deletions with a 2.2 kb one previously reported by another group indicates that the spacing of the CTSs on the deleted allele is critical for the gain of the abnormal methylation and penetrance of the clinical phenotype. Furthermore, we observe that the hypermethylation resulting from the deletions is always mosaic, suggesting that the epigenetic defect at the IGF2-H19 locus is established post-zygotically and may cause body asymmetry and heterogeneity of the clinical phenotype. Finally, the IC1 microdeletions are associated with a high incidence of Wilms' tumour, making their molecular diagnosis particularly important for genetic counselling and tumour surveillance at follow-up.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Impressão Genômica , Neoplasias Renais/genética , Tumor de Wilms/genética , Síndrome de Beckwith-Wiedemann/complicações , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 11 , Metilação de DNA , Feminino , Humanos , Lactente , Recém-Nascido , Fator de Crescimento Insulin-Like II , Neoplasias Renais/complicações , Masculino , Linhagem , Proteínas/genética , RNA Longo não Codificante , RNA não Traduzido/genética , Tumor de Wilms/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA