Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Protein Sci ; 33(7): e5071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38895984

RESUMO

Tuberculosis necrotizing toxin (TNT) is a protein domain discovered on the outer membrane of Mycobacterium tuberculosis (Mtb), and the fungal pathogen Aspergillus fumigatus. TNT domains have pure NAD(P) hydrolytic activity, setting them apart from other NAD-cleaving domains such as ADP-ribosyl cyclase and Toll/interleukin-1 receptor homology (TIR) domains which form a wider set of products. Importantly, the Mtb TNT domain has been shown to be involved in immune evasion via depletion of the intracellular NAD pool of macrophages. Therefore, an intriguing hypothesis is that TNT domains act as "NAD killers" in host cells facilitating pathogenesis. Here, we explore the phylogenetic distribution of TNT domains and detect their presence solely in bacteria and fungi. Within fungi, we discerned six TNT clades. In addition, X-ray crystallography and AlphaFold2 modeling unveiled clade-specific strategies to promote homodimer stabilization of the fungal enzymes, namely, Ca2+ binding, disulfide bonds, or hydrogen bonds. We show that dimer stabilization is a requirement for NADase activity and that the group-specific strategies affect the active site conformation, thereby modulating enzyme activity. Together, these findings reveal the evolutionary lineage of fungal TNT enzymes, corroborating the hypothesis of them being pure extracellular NAD (eNAD) cleavers, with possible involvement in microbial warfare and host immune evasion.


Assuntos
Mycobacterium tuberculosis , NAD , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , NAD/metabolismo , Domínios Proteicos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Cristalografia por Raios X , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Evolução Molecular , Modelos Moleculares , Filogenia , NAD+ Nucleosidase/metabolismo , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética
2.
Biochemistry ; 62(22): 3293-3302, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37934975

RESUMO

Nicotinamide adenine dinucleotide (NAD) is an essential molecule in all kingdoms of life, mediating energy metabolism and cellular signaling. Recently, a new class of highly active fungal surface NADases was discovered. The enzyme from the opportunistic human pathogen Aspergillus fumigatus was thoroughly characterized. It harbors a catalytic domain that resembles that of the tuberculosis necrotizing toxin from Mycobacterium tuberculosis, which efficiently cleaves NAD+ to nicotinamide and ADP-ribose, thereby depleting the dinucleotide pool. Of note, the A. fumigatus NADase has an additional Ca2+-binding motif at the C-terminus of the protein. Despite the presence of NADases in several fungal divisions, the Ca2+-binding motif is uniquely found in the Eurotiales order, which contains species that have immense health and economic impacts on humans. To identify the potential roles of the metal ion-binding site in catalysis or protein stability, we generated and characterized A. fumigatus NADase variants lacking the ability to bind calcium. X-ray crystallographic analyses revealed that the mutation causes a drastic and dynamic structural rearrangement of the homodimer, resulting in decreased thermal stability. Even though the calcium-binding site is at a long distance from the catalytic center, the structural reorganization upon the loss of calcium binding allosterically alters the active site, thereby negatively affecting NAD-glycohydrolase activity. Together, these findings reveal that this unique calcium-binding site affects the protein fold, stabilizing the dimeric structure, but also mediates long-range effects resulting in an increased catalytic rate.


Assuntos
NAD+ Nucleosidase , NAD , Humanos , NAD+ Nucleosidase/química , NAD+ Nucleosidase/genética , NAD+ Nucleosidase/metabolismo , NAD/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Cálcio , Niacinamida
3.
J Struct Biol ; 215(3): 108004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495196

RESUMO

NAD homeostasis in mammals requires the salvage of nicotinamide (Nam), which is cleaved from NAD+ by sirtuins, PARPs, and other NAD+-dependent signaling enzymes. Nam phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in vitamin B3 salvage, whereby Nam reacts with phosphoribosyl pyrophosphate (PRPP) to form nicotinamide mononucleotide. NAMPT has a high affinity towards Nam, which is further enhanced by autophosphorylation of His247. The mechanism of this enhancement has remained unknown. Here, we present high-resolution crystal structures and biochemical data that provide reasoning for the increased affinity of the phosphorylated NAMPT for its substrate. Structural and kinetic analyses suggest a mechanism that includes Mg2+ coordination by phospho-His247, such that PRPP is stabilized in a position highly favorable for catalysis. Under these conditions, nicotinic acid (NA) can serve as a substrate. Moreover, we demonstrate that a stretch of 10 amino acids, present only in NAMPTs from deuterostomes, facilitates conformational plasticity and stabilizes the chemically unstable phosphorylation of His247. Thereby the apparent substrate affinity is considerably enhanced compared to prokaryotic NAMPTs. Collectively, our study provides a structural basis for the important function of NAMPT to recycle Nam into NAD biosynthesis with high affinity.


Assuntos
NAD , Niacinamida , Animais , NAD/metabolismo , Niacinamida/metabolismo , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Fosforilação , Cinética , Mamíferos/metabolismo
4.
Comput Struct Biotechnol J ; 20: 3874-3883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891782

RESUMO

Computational methods for protein structure prediction have made significant strides forward, as evidenced by the last development of the neural network AlphaFold, which outperformed the CASP14 competitors by consistently predicting the structure of target proteins. Here we show an integrated structural investigation that combines the AlphaFold and crystal structures of human trans-3-Hydroxy-l-proline dehydratase, an enzyme involved in hydroxyproline catabolism and whose structure had never been reported before, identifying a structural element, absent in the AlphaFold model but present in the crystal structure, that was subsequently proved to be functionally relevant. Although the AlphaFold model lacked information on protein oligomerization, the native dimer was reconstructed using template-based and ab initio computational approaches. Moreover, molecular phasing of the diffraction data using the AlphaFold model resulted in dimer reconstruction and straightforward structure solution. Our work adds to the integration of AlphaFold with experimental structural and functional data for protein analysis, crystallographic phasing and structure solution.

5.
Mech Ageing Dev ; 199: 111569, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509469

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme in redox reactions. NAD+ is also important in cellular signalling as it is consumed by PARPs, SARM1, sirtuins and CD38. Cellular NAD+ levels regulate several essential processes including DNA repair, immune cell function, senescence, and chromatin remodelling. Maintenance of these cellular processes is important for healthy ageing and lifespan. Interestingly, the levels of NAD+ decline during ageing in several organisms, including humans. Declining NAD+ levels have been linked to several age-related diseases including various metabolic diseases and cognitive decline. Decreasing tissue NAD+ concentrations have been ascribed to an imbalance between biosynthesis and consumption of the dinucleotide, resulting from, for instance, reduced levels of the rate limiting enzyme NAMPT along with an increased activation state of the NAD+-consuming enzymes PARPs and CD38. The progression of some age-related diseases can be halted or reversed by therapeutic augmentation of NAD+ levels. NAD+ metabolism has therefore emerged as a potential target to ameliorate age-related diseases. The present review explores how ageing affects NAD+ metabolism and current approaches to reverse the age-dependent decline of NAD+.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Envelhecimento , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , NAD , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Descoberta de Drogas , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/terapia , NAD/biossíntese , NAD/metabolismo , Oxirredução , Transdução de Sinais
6.
Acta Crystallogr D Struct Biol ; 76(Pt 5): 496-505, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355045

RESUMO

L-Hydroxyproline (L-Hyp) is a nonstandard amino acid that is present in certain proteins, in some antibiotics and in the cell-wall components of plants. L-Hyp is the product of the post-translational modification of protein prolines by prolyl hydroxylase enzymes, and the isomers trans-3-hydroxy-L-proline (T3LHyp) and trans-4-hydroxy-L-proline (T4LHyp) are major components of mammalian collagen. T4LHyp follows two distinct degradation pathways in bacteria and mammals, while T3LHyp is metabolized by a two-step metabolic pathway that is conserved in bacteria and mammals, which involves a T3LHyp dehydratase and a Δ1-pyrroline-2-carboxylate (Pyr2C) reductase. In order to shed light on the structure and catalysis of the enzyme involved in the second step of the T3LHyp degradation pathway, the crystal structure of Pyr2C reductase from the archaeon Thermococcus litoralis DSM 5473 complexed with NADH and L-proline is presented. The model allows the mapping of the residues involved in cofactor and product binding and represents a valid model for rationalizing the catalysis of Pyr2C reductases.


Assuntos
NAD/química , Prolina/química , Pirróis/química , Pirrolina Carboxilato Redutases/química , Thermococcus/enzimologia , Proteínas Arqueais/química , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA