Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Environ Int ; 168: 107438, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994796

RESUMO

BACKGROUND: Lead exposure remains highly prevalent worldwide despite decades of research highlighting its link to numerous adverse health outcomes. In addition to well-documented effects on cognition, there is growing evidence of an association with antisocial behavior, including aggression, conduct problems, and crime. An updated systematic review on this topic, incorporating study evaluation and a developmental perspective on the outcome, can advance the state of the science on lead and inform global policy interventions to reduce exposure. OBJECTIVES: We aim to evaluate the link between lead exposure and antisocial behavior. This association will be investigated via a systematic review of human epidemiological and experimental nonhuman mammalian studies. METHODS: The systematic review protocol presented in this publication is informed by recommendations for the conduct of systematic reviews in toxicology and environmental health research (COSTER) and follows the study evaluation approach put forth by the U.S. EPA Integrated Risk Information System (IRIS) program. DATA SOURCES: We will search the following electronic databases for relevant literature: PubMed, BIOSIS and Web of Science. Search results will be stored in EPA's Health and Environmental Research Online (HERO) database. STUDY ELIGIBILITY AND CRITERIA: Eligible human epidemiological studies will include those evaluating any population exposed to lead at any lifestage via ingestion or inhalation exposure and considering an outcome of antisocial behavior based on any of the following criteria: psychiatric diagnoses (e.g., oppositional defiant disorder (ODD), conduct disorder (CD), disruptive behavior disorders (DBD)); violation of social norms (e.g., delinquency, criminality); and aggression. Eligible experimental animal studies will include those evaluating nonhuman mammalian studies exposed to lead via ingestion, inhalation, or injection exposure during any lifestage. The following outcomes will be considered relevant: aggression; antisocial behavior; and altered fear, anxiety, and stress response. STUDY APPRAISAL AND SYNTHESIS METHODS: Screening will be conducted with assistance from an artificial intelligence application. Two independent reviewers for each data stream (human, animal) will screen studies with highest predicted relevance against pre-specified inclusion criteria at the title/abstract and full-text level. Study evaluation will be conducted using methods adapted from the U.S. EPA IRIS program. After data extraction, we will conduct a narrative review and quantitative meta-analysis on the human epidemiological studies as well as a narrative review of the experimental animal studies. We will evaluate the strength of each evidence stream separately and then will develop a summary evidence integration statement based on inference across evidence streams.

3.
Lancet Planet Health ; 6(6): e535-e547, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594895

RESUMO

The Lancet Commission on pollution and health reported that pollution was responsible for 9 million premature deaths in 2015, making it the world's largest environmental risk factor for disease and premature death. We have now updated this estimate using data from the Global Burden of Diseases, Injuriaes, and Risk Factors Study 2019. We find that pollution remains responsible for approximately 9 million deaths per year, corresponding to one in six deaths worldwide. Reductions have occurred in the number of deaths attributable to the types of pollution associated with extreme poverty. However, these reductions in deaths from household air pollution and water pollution are offset by increased deaths attributable to ambient air pollution and toxic chemical pollution (ie, lead). Deaths from these modern pollution risk factors, which are the unintended consequence of industrialisation and urbanisation, have risen by 7% since 2015 and by over 66% since 2000. Despite ongoing efforts by UN agencies, committed groups, committed individuals, and some national governments (mostly in high-income countries), little real progress against pollution can be identified overall, particularly in the low-income and middle-income countries, where pollution is most severe. Urgent attention is needed to control pollution and prevent pollution-related disease, with an emphasis on air pollution and lead poisoning, and a stronger focus on hazardous chemical pollution. Pollution, climate change, and biodiversity loss are closely linked. Successful control of these conjoined threats requires a globally supported, formal science-policy interface to inform intervention, influence research, and guide funding. Pollution has typically been viewed as a local issue to be addressed through subnational and national regulation or, occasionally, using regional policy in higher-income countries. Now, however, it is increasingly clear that pollution is a planetary threat, and that its drivers, its dispersion, and its effects on health transcend local boundaries and demand a global response. Global action on all major modern pollutants is needed. Global efforts can synergise with other global environmental policy programmes, especially as a large-scale, rapid transition away from all fossil fuels to clean, renewable energy is an effective strategy for preventing pollution while also slowing down climate change, and thus achieves a double benefit for planetary health.


Assuntos
Poluição do Ar , Poluição do Ar/efeitos adversos , Combustíveis Fósseis , Humanos , Renda , Mortalidade Prematura , Fatores de Risco
5.
Lancet Planet Health ; 5(3): e145-e153, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33713615

RESUMO

BACKGROUND: Since the global phase-out of leaded petrol, reports have suggested that lead exposure remains substantial or is increasing in some low-income and middle-income countries (LMICs). However, few studies have attempted to systematically assess blood lead levels over the full range of LMICs. We aimed to describe values for blood lead level in LMICs. METHODS: In this systematic review, we searched PubMed for studies published between Jan 1, 2010, and Oct 31, 2019, that reported blood lead levels in the 137 countries in World Bank LMIC groupings. Studies were reviewed for inclusion if they contained blood lead level data from human populations residing in any given country; comprised at least 30 participants; presented blood lead level data derived from venous, capillary, or umbilical cord samples of whole blood; had data that were collected after Dec 31, 2004; and were published in English. Data on blood lead level were extracted and pooled, as appropriate, to make country-specific estimates of the distribution of background blood lead levels among children and adults, along with information on specific sources of exposure where available. This study is registered with PROSPERO, number CRD42018108706. FINDINGS: Our search yielded 12 695 studies, of which 520 were eligible for inclusion (1100 sampled populations from 49 countries comprising 1 003 455 individuals). Pooled mean blood lead concentrations in children ranged from 1·66 µg/dL (SD 3·31) in Ethiopia to 9·30 µg/dL (11·73) in Palestine, and in adults from 0·39 µg/dL (1·25) in Sudan to 11·36 µg/dL (5·20) in Pakistan. Background values for blood lead level in children could be pooled in 34 countries and were used to estimate background distributions for 1·30 billion of them. 632 million children (95% CI 394 million-780 million; 48·5%) were estimated to have a blood lead level exceeding the US Centers for Disease Control's reference value of 5 µg/dL. Major sources of lead exposure were informal lead acid battery recycling and manufacture, metal mining and processing, electronic waste, and the use of lead as a food adulterant, primarily in spices. INTERPRETATION: Many children have a blood lead level exceeding 5 µg/dL in LMICs, despite leaded petrol phase-outs. Given the toxicity of lead, even at low amounts of exposure, urgent attention is required to control exposures and to expand population-based sampling in countries with no or scant data. FUNDING: This work was supported by the United States Agency for International Development (Cooperative Agreement number AID-OAA-A-16-00019).


Assuntos
Países em Desenvolvimento , Chumbo/sangue , Adulto , Criança , Exposição Ambiental/normas , Exposição Ambiental/estatística & dados numéricos , Humanos , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA