Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Diagn Microbiol Infect Dis ; 110(1): 116401, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878343

RESUMO

Brucellosis is a critical zoonotic disease impacting humans and animals globally, causing symptoms like fever and arthritis in humans and reproductive issues in animals. The disease stems from the Brucella genus, adept at evading the immune system and proliferating within host cells. This study explores how Brucella abortus manipulates host cellular mechanisms to sustain infection, focusing on the interaction with murine macrophages over 24 h. Initial host defenses involve innate immune responses, while Brucella's survival strategies include evading lysosomal degradation and modulating host cell functions through various pathways. The research identified significant transcriptional changes in macrophages post-infection, highlighting pathways such as cytokine storm, pyroptosis signaling, Toll-like receptor pathways, and LXRs/RXRs signaling. The findings shed light on Brucella's complex mechanisms to undermine host defenses and underscore the need for further investigation into therapeutic targets to combat brucellosis.

2.
Sci Data ; 11(1): 220, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374088

RESUMO

Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB, 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB. This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of this disease.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
4.
Sci Data ; 10(1): 379, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316506

RESUMO

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people worldwide and has significant implications for public health. Host transcriptomics profiling provides comprehensive understanding of how the virus interacts with host cells and how the host responds to the virus. COVID-19 disease alters the host transcriptome, affecting cellular pathways and key molecular functions. To contribute to the global effort to understand the virus's effect on host cell transcriptome, we have generated a dataset from nasopharyngeal swabs of 35 individuals infected with SARS-CoV-2 from the Campania region in Italy during the three outbreaks, with different clinical conditions. This dataset will help to elucidate the complex interactions among genes and can be useful in the development of effective therapeutic pathways.


Assuntos
COVID-19 , Transcriptoma , Humanos , Itália , Pandemias , SARS-CoV-2
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674648

RESUMO

The main cause of morbidity and mortality in diabetes mellitus (DM) is cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here, we compared these two models for their effects on cardiac structure, function and transcriptome. Different doses of STZ and diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and nonobese sex- and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR and RNA-seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM affected left ventricular function and myocardial performance differently. T1DM displayed exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis, along with increased cardiac oxidative stress, CM DNA damage and senescence, when compared to T2DM in mice. T1DM and T2DM affected the whole cardiac transcriptome differently. In conclusion, the STZ-induced T1DM and T2DM mouse models showed significant differences in cardiac remodeling, function and the whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Camundongos , Animais , Cardiomiopatias Diabéticas/genética , Estreptozocina/efeitos adversos , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/induzido quimicamente , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
J Med Virol ; 94(11): 5567-5573, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35831579

RESUMO

In December 2019, several patients were hospitalized and diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which subsequently led to a global pandemic. To date, there are no studies evaluating the relationship between the respiratory phageome and the SARS-CoV-2 infection. The current study investigated the phageome profiles in the nasopharyngeal swabs collected from 55 patients during the three different waves of coronavirus disease 2019 (COVID-19) in the Campania Region (Southern Italy). Data obtained from the taxonomic profiling show that phage families belonging to the order Caudovirales have a high abundance in the patient samples. Moreover, the severity of the COVID-19 infection seems to be correlated with the phage abundance.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Índice de Gravidade de Doença , Viroma
7.
Microb Pathog ; 165: 105506, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35358660

RESUMO

Since its first appearance, the SARS-CoV-2 has spread rapidly in the human population, reaching the pandemic scale with >280 million confirmed infections and more than 5 million deaths to date (https://covid19.who.int/). These data justify the urgent need to enhance our understanding of SARS-CoV-2 effects in the respiratory system, including those linked to co-infections. The principal aim of our study is to investigate existing correlations in the nasopharynx between the bacterial community, potential pathogens, and SARS-CoV-2 infection. The main aim of this study was to provide evidence pointing to possible relationships between components of the bacterial community and SARS-CoV-2 in the nasopharynx. Meta-transcriptomic profiling of the nasopharyngeal microbial community was carried out in 89 SARS-Cov-2 positive subjects from the Campania Region in Italy. To this end, RNA extracted from nasopharyngeal swabs collected at different times during the initial phases of the pandemic was analyzed by Next-Generation Sequencing (NGS). Results show a consistently high presence of members of the Proteobacteria (41.85%), Firmicutes (28.54%), and Actinobacteria (16.10%) phyla, and an inverted correlation between the host microbiome, co-infectious bacteria, and super-potential pathogens such as Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Neisseria gonorrhoeae. In depth characterization of microbiota composition in the nasopharynx can provide clues to understand its potential contribution to the clinical phenotype of Covid-19, clarifying the interaction between SARS-Cov-2 and the bacterial flora of the host, and highlighting its dysbiosis and the presence of pathogens that could affect the patient's disease progression and outcome.


Assuntos
COVID-19 , Coinfecção , Microbiota , Bactérias/genética , Coinfecção/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália/epidemiologia , Microbiota/genética , Nasofaringe/microbiologia , Pandemias , SARS-CoV-2/genética
8.
Diagn Microbiol Infect Dis ; 102(4): 115632, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35074623

RESUMO

The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Nasofaringe , SARS-CoV-2/genética , Águas Residuárias
9.
J Med Virol ; 94(5): 2275-2283, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34989406

RESUMO

From December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly, leading to a global pandemic. Little is known about possible relationships between SARS-CoV-2 and other viruses in the respiratory system affecting patient prognosis and outcomes. This study aims to characterize respiratory virome profiles in association with SARS-CoV-2 infection and disease severity, through the analysis in 89 nasopharyngeal swabs collected in a patient's cohort from the Campania region (Southern Italy). Results show coinfections with viral species belonging to Coronaviridae, Retroviridae, Herpesviridae, Poxviridae, Pneumoviridae, Pandoraviridae, and Anelloviridae families and only 2% of the cases (2/89) identified respiratory viruses.


Assuntos
COVID-19 , Nasofaringe , COVID-19/epidemiologia , COVID-19/terapia , COVID-19/virologia , Humanos , Itália/epidemiologia , Nasofaringe/virologia , Pandemias , SARS-CoV-2 , Viroma
10.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208249

RESUMO

Integrins are cell-extracellular matrix adhesion molecules whose expression level undergoes quantitative changes upon neoplastic transformation and are considered functionally related to the development of cancer metastasis. We analyzed the largest mRNA-seq dataset available to determine the expression pattern of integrin family subunits in papillary thyroid carcinomas (PTC). ITGA2, 3, 6, V, and ITGB1 integrin subunits were overexpressed in PTC compared to normal thyroid tissue. The PTC histology variants "classical" and "tall cell" displayed a similar integrin expression profile with a higher level of ITGA3, ITGAV, and ITGB1, which differed from that of the "follicular" variant. Interestingly, compared to RAS mutations, BRAFV600E mutation was associated with a significantly higher expression of integrins. Some integrin subunits were associated with advanced disease stage, lymph node metastasis, extrathyroidal extension, and high-risk groups. Among them, ITGA3 expression displayed the highest correlation with advanced disease and was associated with a negative prognosis. In vitro scratch assay and Matrigel invasion assay in two different PTC cell lines confirmed α3ß1 role in cell motility and invasion, supporting its involvement during tumor progression. These results demonstrate the existence of a PTC-specific integrin expression signature correlated to histopathology, specific driver gene mutations, and aggressiveness of the disease.

11.
BMC Bioinformatics ; 22(Suppl 7): 106, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225648

RESUMO

BACKGROUND: Next-Generation-Sequencing (NGS) enables detection of microorganisms present in biological and other matrices of various origin and nature, allowing not only the identification of known phyla and strains but also the discovery of novel ones. The large amount of metagenomic shotgun data produced by NGS require comprehensive and user-friendly pipelines for data analysis, that speed up the bioinformatics steps, relieving the users from the need to manually perform complex and time-consuming tasks. RESULTS: We describe here HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities), an exhaustive pipeline for metagenomics data analysis, comprising three independent analytical modules designed for an inclusive analysis of large NGS datasets. CONCLUSIONS: HOME-BIO is a powerful and easy-to-use tool that can be run also by users with limited computational expertise. It allows in-depth analyses by removing low-complexity/ problematic reads, integrating the analytical steps that lead to a comprehensive taxonomy profile of each sample by querying different source databases, and it is customizable according to specific users' needs.


Assuntos
Análise de Dados , Metagenômica , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Software
12.
Cancers (Basel) ; 12(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512900

RESUMO

Ovarian cancer (OC) shows the highest mortality rate among gynecological malignancies and, because of the absence of specific symptoms, it is frequently diagnosed at an advanced stage, mainly due to the lack of specific and early biomarkers, such as those based on cancer molecular signature identification. Indeed, although significant progress has been made toward improving the clinical outcome of other cancers, rates of mortality for OC are essentially unchanged since 1980, suggesting the need of new approaches to identify and characterize the molecular mechanisms underlying pathogenesis and progression of these malignancies. In addition, due to the low response rate and the high frequency of resistance to current treatments, emerging therapeutic strategies against OC focus on targeting single factors and pathways specifically involved in tumor growth and metastasis. To date, loss-of-function screenings are extensively applied to identify key drug targets in cancer, seeking for more effective, disease-tailored treatments to overcome lack of response or resistance to current therapies. We review here the information relative to essential genes and functional pathways recently discovered in OC, often strictly interconnected with each other and representing promising biomarkers and molecular targets to treat these malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA