Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(7): 076302, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427886

RESUMO

The Kubo formula is a cornerstone in our understanding of near-equilibrium transport phenomena. While conceptually elegant, the application of Kubo's linear-response theory to interesting problems is hindered by the need for algorithms that are accurate and scalable to large lattice sizes beyond one spatial dimension. Here, we propose a general framework to numerically study large systems, which combines the spectral accuracy of Chebyshev expansions with the efficiency of divide-and-conquer methods. We use the hybrid algorithm to calculate the two-terminal conductance and the bulk conductivity tensor of 2D lattice models with over 10^{7} sites. By efficiently sampling the microscopic information contained in billions of Chebyshev moments, the algorithm is able to accurately resolve the linear-response properties of complex systems in the presence of quenched disorder. Our results lay the groundwork for future studies of transport phenomena in previously inaccessible regimes.

2.
Phys Rev Lett ; 129(19): 196601, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399729

RESUMO

We present the first theoretical study of transport properties of Weyl semimetals with point defects. Focusing on a class of time-reversal symmetric Weyl lattice models, we show that dilute lattice vacancies induce a finite density of quasilocalized states at and near the nodal energy, causing strong modifications to the low-energy spectrum. This generates novel transport effects, namely, (i) an oscillatory behavior of the dc conductivity with the charge carrier density in the absence of magnetic fields, and (ii) a plateau-shaped dissipative optical response for photon frequencies below the interband threshold, E_{F}≲ℏω≲2E_{F}. Our results provide a path to engineer unconventional quantum transport effects in Weyl semimetals by means of common point defects.

3.
Nano Lett ; 21(17): 7100-7108, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415771

RESUMO

Graphite crystals used to prepare graphene-based heterostructures are generally assumed to be defect free. We report here scanning tunneling microscopy results that show graphite commonly used to prepare graphene devices can contain a significant amount of native defects. Extensive scanning of the surface allows us to determine the concentration of native defects to be 6.6 × 108 cm-2. We further study the effects of these native defects on the electronic properties of Bernal-stacked bilayer graphene. We observe gate-dependent intravalley scattering and successfully compare our experimental results to T-matrix-based calculations, revealing a clear carrier density dependence in the distribution of the scattering vectors. We also present a technique for evaluating the spatial distribution of short-scale scattering. Finally, we present a theoretical analysis based on the Boltzmann transport equation that predicts that the dilute native defects identified in our study are an important extrinsic source of scattering, ultimately setting the charge carrier mobility at low temperatures.


Assuntos
Grafite , Eletrônica , Microscopia de Tunelamento
4.
Phys Rev Lett ; 124(23): 236803, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603148

RESUMO

Efficient detection of spin-charge conversion is crucial for advancing our understanding of emergent phenomena in spin-orbit-coupled nanostructures. Here, we provide a proof of principle of an electrical detection scheme of spin-charge conversion that enables full disentanglement of competing spin-orbit coupling (SOC) transport phenomena in diffusive lateral channels, i.e., the inverse spin Hall effect and the spin galvanic effect. A suitable geometry in an applied oblique magnetic field is shown to provide direct access to SOC transport coefficients through a symmetry analysis of the output nonlocal resistance. The scheme is robust against tilting of the spin-injector magnetization, disorder, and spurious non-spin-related contributions to the nonlocal signal and can be used to probe spin-charge conversion effects in both spin-valve and hybrid optospintronic devices.

5.
ACS Nano ; 14(5): 5251-5259, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32267673

RESUMO

We report the observation of current-induced spin polarization, the Rashba-Edelstein effect (REE), and its Onsager reciprocal phenomenon, the spin galvanic effect (SGE), in a few-layer graphene/2H-TaS2 heterostructure at room temperature. Spin-sensitive electrical measurements unveil full spin-polarization reversal by an applied gate voltage. The observed gate-tunable charge-to-spin conversion is explained by the ideal work function mismatch between 2H-TaS2 and graphene, which allows for a strong interface-induced Bychkov-Rashba interaction with a spin-gap reaching 70 meV, while keeping the Dirac nature of the spectrum intact across electron and hole sectors. The reversible electrical generation and control of the nonequilibrium spin polarization vector, not previously observed in a nonmagnetic material, are elegant manifestations of emergent two-dimensional Dirac Fermions with robust spin-helical structure. Our experimental findings, supported by first-principles relativistic electronic structure and transport calculations, demonstrate a route to design low-power spin-logic circuits from layered materials.

6.
R Soc Open Sci ; 7(2): 191809, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257336

RESUMO

We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N ∼ 1010). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.

7.
Phys Rev Lett ; 121(12): 126802, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296155

RESUMO

We present a unified theory of charge carrier transport in 2D Dirac systems with broken mirror inversion and time-reversal symmetries (e.g., as realized in ferromagnetic graphene). We find that the entanglement between spin and pseudospin SU(2) degrees of freedom stemming from spin-orbit effects leads to a distinctive gate voltage dependence (change of sign) of the anomalous Hall conductivity approaching the topological gap, which remains robust against impurity scattering and thus is a smoking gun for magnetized 2D Dirac fermions. Furthermore, we unveil a robust skew scattering mechanism, modulated by the spin texture of the energy bands, which causes a net spin accumulation at the sample boundaries even for spin-transparent disorder. The newly unveiled extrinsic spin Hall effect is readily tunable by a gate voltage and opens novel opportunities for the control of spin currents in 2D ferromagnetic materials.

8.
Phys Rev Lett ; 119(24): 246801, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29286746

RESUMO

We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.

9.
Phys Rev Lett ; 119(19): 196801, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219509

RESUMO

When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

10.
Phys Rev Lett ; 115(10): 106601, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26382689

RESUMO

Graphene subjected to chiral-symmetric disorder is believed to host zero energy modes (ZEMs) resilient to localization, as suggested by the renormalization group analysis of the underlying nonlinear sigma model. We report accurate quantum transport calculations in honeycomb lattices with in excess of 10^{9} sites and fine meV resolutions. The Kubo dc conductivity of ZEMs induced by vacancy defects (chiral BDI class) is found to match 4e(2)/πh within 1% accuracy, over a parametrically wide window of energy level broadenings and vacancy concentrations. Our results disclose an unprecedentedly robust metallic regime in graphene, providing strong evidence that the early field-theoretical picture for the BDI class is valid well beyond its controlled weak-coupling regime.

11.
Nat Commun ; 5: 4748, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25175340

RESUMO

Advances in large-area graphene synthesis via chemical vapour deposition on metals like copper were instrumental in the demonstration of graphene-based novel, wafer-scale electronic circuits and proof-of-concept applications such as flexible touch panels. Here, we show that graphene grown by chemical vapour deposition on copper is equally promising for spintronics applications. In contrast to natural graphene, our experiments demonstrate that chemically synthesized graphene has a strong spin-orbit coupling as high as 20 meV giving rise to a giant spin Hall effect. The exceptionally large spin Hall angle ~0.2 provides an important step towards graphene-based spintronics devices within existing complementary metal-oxide-semiconductor technology. Our microscopic model shows that unavoidable residual copper adatom clusters act as local spin-orbit scatterers and, in the resonant scattering limit, induce transverse spin currents with enhanced skew-scattering contribution. Our findings are confirmed independently by introducing metallic adatoms-copper, silver and gold on exfoliated graphene samples.

12.
Phys Rev Lett ; 112(6): 066601, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580699

RESUMO

We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with respect to thermal fluctuations and disorder averaging.

13.
J Phys Condens Matter ; 25(12): 125303, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23449256

RESUMO

We provide an analytical solution to the problem of scattering of electromagnetic radiation by a square-wave grating with a flat graphene sheet on top. We show that for deep groves there is a strong plasmonic response, with light absorption in the graphene sheet reaching more than 45% due to the excitation of surface plasmon-polaritons. The case of a grating with a graphene sheet presenting an induced periodic modulation of the conductivity is also discussed.

14.
J Phys Condens Matter ; 24(24): 245303, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22609560

RESUMO

We describe light scattering from a graphene sheet having a modulated optical conductivity. We show that such modulation enables the excitation of surface plasmon polaritons by an electromagnetic wave impinging at normal incidence. The resulting surface plasmon polaritons are responsible for a substantial increase of electromagnetic radiation absorption by the graphene sheet. The origin of the modulation can be due either to a periodic strain field or to adatoms (or absorbed molecules) with a modulated adsorption profile.

15.
Phys Rev Lett ; 96(6): 060407, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605972

RESUMO

Can entanglement and the quantum behavior in physical systems survive at arbitrary high temperatures? In this Letter we show that this is the case for a electromagnetic field mode in an optical cavity with a movable mirror in a thermal state. We also identify two different dynamical regimes of generation of entanglement separated by a critical coupling strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA