Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38930181

RESUMO

Three-dimensional printing (3DP) has emerged as a promising method for creating intricate scaffold designs. This study assessed three 3DP scaffold designs fabricated using biodegradable poly(lactic) acid (PLA) through fused deposition modelling (FDM): mesh, two channels (2C), and four channels (4C). To address the limitations of PLA, such as hydrophobic properties and poor cell attachment, a post-fabrication modification technique employing Polyelectrolyte Multilayers (PEMs) coating was implemented. The scaffolds underwent aminolysis followed by coating with SiCHA nanopowders dispersed in hyaluronic acid and collagen type I, and finally crosslinked the outermost coated layers with EDC/NHS solution to complete the hybrid scaffold production. The study employed rotating wall vessels (RWVs) to investigate how simulating microgravity affects cell proliferation and differentiation. Human mesenchymal stem cells (hMSCs) cultured on these scaffolds using proliferation medium (PM) and osteogenic media (OM), subjected to static (TCP) and dynamic (RWVs) conditions for 21 days, revealed superior performance of 4C hybrid scaffolds, particularly in OM. Compared to commercial hydroxyapatite scaffolds, these hybrid scaffolds demonstrated enhanced cell activity and survival. The pre-vascularisation concept on 4C hybrid scaffolds showed the proliferation of both HUVECs and hMSCs throughout the scaffolds, with a positive expression of osteogenic and angiogenic markers at the early stages.

2.
J Funct Biomater ; 14(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37888160

RESUMO

A major challenge for future drug development comprises finding alternative models for drug screening. The use of animal models in research is highly controversial, with an ongoing debate on their ethical acceptability. Also, animal models are often poorly predictive of therapeutic outcomes due to the differences between animal and human physiological environments. In this study, we aimed to develop a biomimetic hydrogel that replicates the composition of skin for potential use in in vitro modeling within tissue engineering. The hydrogel was fabricated through the crosslinking of collagen type I, hyaluronic acid, four-arm PEG succinimidyl glutarate (4S-StarPEG), and fibrinogen. Various ratios of these components were systematically optimized to achieve a well-interconnected porosity and desirable rheological properties. To evaluate the hydrogel's cytocompatibility, fibroblasts were embedded within the matrix. The resulting hydrogel exhibited promising properties as a scaffold, also facilitating the growth of and proliferation of the cells. This biomimetic hydrogel holds great potential for tissue engineering applications, particularly in skin regeneration and cancer research. The study used melanoma spheroids fabricated using the 96-round bottom well plate method as a potential application. The results demonstrate that the developed hydrogels allowed the maintenance of spheroid integrity and viability, meaning it has a promising use as a three-dimensional in vitro model of melanoma for both tissue engineering and drug screening applications.

3.
Biomater Adv ; 153: 213532, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390561

RESUMO

Cell seeding via cell-laden hydrogels offers a rapid way of depositing cells onto a substrate or scaffold. When appropriately formulated, hydrogels provide a dense network of fibres for cellular encapsulation and attachment, creating a protective environment that prevents cells to be washed away by media. However, when incorporating hydrogels into a cell seeding strategy the cellular capacity for migration from a hydrogel network and subsequent biofunctionality must be assessed. Here, we compare cell seeding via a bioprinted hydrogel with conventional manual cell seeding in media. To this end, we use a binder jet 3D printed bioceramic scaffold as a model system for bone tissue engineering and the reactive jet impingement (ReJI) bioprinting system to deliver high cell density cell-laden hydrogels onto the surface of the scaffolds. The bioceramic scaffolds were produced in apatite-wollastonite (AW) glass-ceramic, with a total porosity of ~50 %, with pore size predominantly around 50-200 µm. Bone marrow-derived mesenchymal stromal cells were seeded onto the porous AW substrate both in media and via ReJI bioprinting. Cell seeding in media confirmed the osteoinductive nature and the ability of the scaffold to support cell migration within the porous structure. Cell seeding via ReJI bioprinting demonstrated that the cell-laden hydrogel penetrated the porous AW structure upon hydrogel deposition. Furthermore, cells would then migrate out from the hydrogel network and interact with the bioceramic substrate. Overall, levels of cell migration and mineralisation were significant and comparable for both seeding approaches. However, cell seeding via bioprinted hydrogels may serve as an effective strategy for in situ cell seeding into implants, which is desired in clinical tissue engineering procedures, avoiding the time taken for cell attachment from media, and the requirement to maintain a specific orientation until attachment has occurred.


Assuntos
Hidrogéis , Engenharia Tecidual , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Porosidade , Movimento Celular
5.
Polymers (Basel) ; 15(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050208

RESUMO

Chitosan is one of the most researched biopolymers for healthcare applications, however, being a naturally derived polymer, it is susceptible to endotoxin contamination, which elicits pro-inflammatory responses, skewing chitosan's performance and leading to inaccurate conclusions. It is therefore critical that endotoxins are quantified and removed for in vivo use. Here, heat and mild NaOH treatment are investigated as facile endotoxin removal methods from chitosan. Both treatments effectively removed endotoxin to below the FDA limit for medical devices (<0.5 EU/mL). However, in co-culture with peripheral blood mononuclear cells (PBMCs), only NaOH-treated chitosan prevented TNF-α production. While endotoxin removal is the principal task, the preservation of chitosan's structure is vital for the synthesis and lysozyme degradation of chitosan-based hydrogels. The chemical properties of NaOH-treated chitosan (by FTIR-ATR) were significantly similar to its native composition, whereas the heat-treated chitosan evidenced macroscopic chemical and physical changes associated with the Maillard reaction, deeming this treatment unsuitable for further applications. Degradation studies conducted with lysozyme demonstrated that the degradation rates of native and NaOH-treated chitosan-genipin hydrogels were similar. In vitro co-culture studies showed that NaOH hydrogels did not negatively affect the cell viability of monocyte-derived dendritic cells (moDCs), nor induce phenotypical maturation or pro-inflammatory cytokine release.

6.
Acta Biomater ; 155: 1-18, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356914

RESUMO

The use of biomaterials for tissue engineering and regenerative medicine applications has increased dramatically over recent years. However, the clinical uptake of a wide variety of biomaterials remains limited due to adverse effects commonly exhibited by patients, which are caused by the host immune response. Despite this, current in vitro evaluation standards (ISO-10993) for assessing the host response to biomaterials have limitations in predicting the likelihood of in vivo biomaterial acceptance. Furthermore, endotoxin contamination of biomaterials is rarely considered, despite its ability to significantly affect the performance of biomaterials and engineered tissues. This review highlights the importance of the immune response to biomaterials and discusses existing challenges and opportunities in the development and standardised assessment of the immune response to biomaterials, including the importance of endotoxin levels. In addition, the properties of biomaterials that impact the host immune response and the exploitation of immunomodulatory biomaterials in regenerative medicine are explored. Finally, a standardised in vitro pathway of evaluating the immune response to biomaterials (hydrogels) and their regenerative potential is proposed, aiming to ensure safety and consistency, while reducing costs and the use of animals in the biomaterials research for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This review presents a critical analysis of the role of the interactions between the immune system and biomaterials in determining the therapeutic success of biomaterial-based approaches. No such review addressing the lack of understanding of biomaterial-immune system interactions during the developmental and pre-clinical stages of biomaterials, including the impact of the endotoxin levels of biomaterials on the immune response, is published. As there is a lack of in vitro regulations to evaluate the immune response to biomaterials, a standardised in vitro pathway to evaluate the immune response to biomaterials (hydrogels) and their immunomodulatory and regenerative potential for use in tissue engineering/regenerative medicine applications is presented. The aim of the proposed pathway of biomaterial evaluation is to ensure safety and consistency in the biomaterials research community, while reducing costs and animal use (through the concept of the 3R's - reduction, refinement, and replacement of animals).


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Engenharia Tecidual , Sistema Imunitário , Hidrogéis
7.
Biopolymers ; 114(1): e23527, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36444710

RESUMO

With an ageing world population and ~20% of adults in Europe being affected by bone diseases, there is an urgent need to develop advanced regenerative approaches and biomaterials capable to facilitate tissue regeneration while providing an adequate microenvironment for cells to thrive. As the main components of bone are collagen and apatite mineral, scientists in the tissue engineering field have attempted in combining these materials by using different biomimetic approaches to favour bone repair. Still, an ideal bone analogue capable of mimicking the distinct properties (i.e., mechanical properties, degradation rate, porosity, etc.) of cancellous bone is to be developed. This review seeks to sum up the current understanding of bone tissue mineralisation and structure while providing a critical outlook on the existing biomimetic strategies of mineralising collagen for bone tissue engineering applications, highlighting where gaps in knowledge exist.


Assuntos
Materiais Biomiméticos , Engenharia Tecidual , Alicerces Teciduais/química , Biomimética , Osso e Ossos/metabolismo , Colágeno/química , Materiais Biomiméticos/química
8.
Materials (Basel) ; 15(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431564

RESUMO

Bioceramic scaffolds, composed of a biphasic composite containing bioactive glass and hydroxyapatite, were prepared in this work to overcome the intrinsic limits of the two components taken separately (in particular, their specific reactivities and dissolution rates, which should be tunable as a function of the given clinical requirements). To mimic the biological environment and tune the different stages of cellular response, a coating with gelatin and chondroitin sulphate via Layer-by-Layer (LbL) assembly was presented and discussed. The resulting functionalized scaffolds were affected by the coating in terms of microstructure and porosity. In addition, the LbL coating significantly enhanced the seeded cell behaviour, with high adhesion, proliferation and osteogenic activity, as revealed by the alkaline phosphatase activity and overexpression of osteopontin and osteocalcin.

9.
Macromol Biosci ; 22(6): e2200071, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365963

RESUMO

The surface of metal implants serves as a powerful signaling cue for cells. Its properties play an essential role in stabilizing the bone-implant interface and facilitating the early osseointegration by encouraging bone deposition on the surface. However, effective strategies to deliver cells to the metal surfaces are yet to be explored. Here, a bioprinting process, called reactive jet impingement (ReJI), is used to deposit high concentrations (4 × 107  cells mL-1 ) of mesenchymal stromal cells (MSCs) within hydrogel matrices directly onto the titanium alloy surfaces that vary in surface roughness and morphology. In this proof-of-concept study, cell-hydrogel-metal systems are fabricated with the aim of enhancing bioactivity through delivering MSCs in hydrogels at the bone-implant interface. These results show that the high cell concentrations encourage quick cell-biomaterial interactions at the hydrogel-metal surface interface, and cell morphology is influenced by the surface type. Cells migrate from the hydrogels and deposit mineralized matrix rich in calcium and phosphorus on the titanium alloy surfaces. The authors demonstrate that ReJI bioprinting is a promising tool to deliver cells in a 3D environment before implantation that can be used when developing a new generation of medical devices for bone tissue engineering.


Assuntos
Bioimpressão , Ligas , Bioimpressão/métodos , Hidrogéis/farmacologia , Osseointegração , Titânio/farmacologia
10.
Cells ; 10(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943837

RESUMO

Recent improvements within the fields of high-throughput screening and 3D tissue culture have provided the possibility of developing in vitro micro-tissue models that can be used to study diseases and screen potential new therapies. This paper reports a proof-of-concept study on the use of microvalve-based bioprinting to create laminar MSC-chondrocyte co-cultures to investigate whether the use of MSCs in ACI procedures would stimulate enhanced ECM production by chondrocytes. Microvalve-based bioprinting uses small-scale solenoid valves (microvalves) to deposit cells suspended in media in a consistent and repeatable manner. In this case, MSCs and chondrocytes have been sequentially printed into an insert-based transwell system in order to create a laminar co-culture, with variations in the ratios of the cell types used to investigate the potential for MSCs to stimulate ECM production. Histological and indirect immunofluorescence staining revealed the formation of dense tissue structures within the chondrocyte and MSC-chondrocyte cell co-cultures, alongside the establishment of a proliferative region at the base of the tissue. No stimulatory or inhibitory effect in terms of ECM production was observed through the introduction of MSCs, although the potential for an immunomodulatory benefit remains. This study, therefore, provides a novel method to enable the scalable production of therapeutically relevant micro-tissue models that can be used for in vitro research to optimise ACI procedures.


Assuntos
Bioimpressão , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Linhagem Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Técnicas de Cocultura , Humanos , Modelos Biológicos
11.
Biomater Sci ; 9(7): 2542-2552, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33571331

RESUMO

Demand continues to grow for biomimetic materials able to create well-defined environments for modulating the behaviour of living cells in culture. Here, we describe hydrogels based upon the polymeric bacterial fimbriae protein capsular antigen fragment 1 (Caf1) that presents tunable biological properties for enhanced tissue cell culture applications. We demonstrate how Caf1 hydrogels can regulate cellular functions such as spreading, proliferation and matrix deposition of human dermal fibroblast cells (hDFBs). Caf1 hydrogels exploring a range of mechanical properties were prepared using copolymers featuring controlled compositions of inert wild-type Caf1 subunits and a mutant subunit displaying the RGDS peptide motif. The hydrogels showed excellent cytocompatibility with hDFBs and the ability to modulate both cell morphology and matrix deposition. Interestingly, Caf1 hydrogels displaying faster stress relaxation were demonstrated to show the highest metabolic activities of growing cells in comparison with other Caf1 hydrogel formulations. The stiffest Caf1 hydrogel impacted cellular morphology, inducing alignment of the cells. This work is significant as it clearly indicates that Caf1-based hydrogels offer tuneable biochemical and mechanical substrates conditions suitable for cell culture applications.


Assuntos
Materiais Biomiméticos , Hidrogéis , Técnicas de Cultura de Células , Fímbrias Bacterianas , Humanos , Polímeros
12.
Artigo em Inglês | MEDLINE | ID: mdl-32733869

RESUMO

Osteosarcoma (OS) accounts for 60% of all global bone cancer diagnoses. Intravenous administration of Doxorubicin Hydrochloride (DOXO) is the current form of OS treatment, however, systemic delivery has been linked to the onset of DOXO induced cardiomyopathy. Biomaterials including calcium phosphate cements (CPCs) and nanoparticles (NPs) have been tested as localized drug delivery scaffolds for OS cells. However, the tumor microenvironment is critical in cancer progression, with mesenchymal stem cells (MSCs) thought to promote OS metastasis and drug resistance. The extent of MSC assisted survival of OS cells in response to DOXO delivered by CPCs is unknown. In this study, we aimed at investigating the effect of DOXO release from a new formulation of calcium phosphate-based bone cement on the viability of OS cells cocultured with hMSC in vitro. NPs made of PLGA were loaded with DOXO and incorporated in the formulated bone cement to achieve local drug release. The inclusion of PLGA-DOXO NPs into CPCs was also proven to increase the levels of cytotoxicity of U2OS cells in mono- and coculture after 24 and 72 h. Our results demonstrate that a more effective localized DOXO delivery can be achieved via the use of CPCs loaded with PLGA-DOXO NPs compared to CPCs loaded with DOXO, by an observed reduction in metabolic activity of U2OS cells in indirect coculture with hMSCs. The presence of hMSCs offer a degree of DOXO resistance in U2OS cells cultured on PLGA-DOXO NP bone cements. The consideration of the tumor microenvironment via the indirect inclusion of hMSCs in this study can act as a starting point for future direct coculture and in vivo investigations.

13.
Biofabrication ; 12(4): 045024, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32629440

RESUMO

Drop-on-demand (DoD) inkjet printing has been explored for a range of applications, including those to selectively deposit cellular material, due to the high accuracy and scalability of such systems when compared with alternative bioprinting techniques. Despite this, there remain considerable limitations when handling cell suspensions due to the agglomeration and sedimentation of cells during printing, leading to a deterioration in jetting performance. The objective of this work was to design and assess the effectiveness of a custom agitation system to maintain cellular dispersion within the ink reservoir during printing. The cell printing performance of an inkjet printer was assessed with and without the use of a custom agitation system, with biological characterisation performed to characterise the impact of the agitator on cellular viability and function. Cell printing performance was retained over a 2 h printing period when incorporating an agitated reservoir, with a gradual reduction in performance observed under a non-agitated configuration. Cell assays indicated that the agitation process did not significantly affect the viability, metabolic activity or morphology of the mesenchymal stromal cell (MSC) or chondrocyte cell types. This study therefore provides a new methodology to increase process reliability within DoD printing platforms when jetting cellularised material.


Assuntos
Bioimpressão , Condrócitos , Sobrevivência Celular , Impressão Tridimensional , Reprodutibilidade dos Testes
14.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019244

RESUMO

As the population of western societies on average ages, the number of people affected by bone remodeling-associated diseases such as osteoporosis continues to increase. The development of new therapeutics is hampered by the high failure rates of drug candidates during clinical testing, which is in part due to the poor predictive character of animal models during preclinical drug testing. Co-culture models of osteoblasts and osteoclasts offer an alternative to animal testing and are considered to have the potential to improve drug development processes in the future. However, a robust, scalable, and reproducible 3D model combining osteoblasts and osteoclasts for preclinical drug testing purposes has not been developed to date. Here we review various types of osteoblast-osteoclast co-culture models and outline the remaining obstacles that must be overcome for their successful translation.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Remodelação Óssea/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Osteoblastos/citologia , Osteoclastos/citologia , Osteoporose/tratamento farmacológico , Animais , Técnicas de Cocultura , Humanos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos
15.
Mater Sci Eng C Mater Biol Appl ; 104: 109929, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500017

RESUMO

The clinical application of composites seeks to exploit the mechanical and chemical properties of materials which make up the composite, and in researching polymer composites for biomedical applications the aim is usually to enhance the bioactivity of the polymer, while maintaining the mechanical properties. To that end, in this study medical grade Poly(L-lactic) acid (PLLA) has been reinforced with short phosphate-based glass fibers (PGF). The materials were initially mixed by melting PLLA granules with the short fibers, before being extruded to form a homogenous filament, which was pelletized and used as feedstock for compression moulding. As made the composite materials had a bending strength of 51 MPa ±â€¯5, and over the course of eight weeks in PBS the average strength of the composite material was in the range 20-50 MPa. Human mesenchymal stromal cells were cultured on the surfaces of scaffolds, and the metabolic activity, alkaline phosphatase production and mineralization monitored over a three week period. The short fiber filler made no significant difference to cell proliferation or differentiation, but had a clear and immediate osteoinductive effect, promoting mineralization by cells at the material surface. It is concluded that the PLLA/PGF composite material offers a material with both the mechanical and biological properties for potential application to bone implants and fixation, particularly where an osteoinductive effect would be valuable.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Vidro/química , Fosfatos/farmacologia , Poliésteres/farmacologia , Bioensaio , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Íons , Osteogênese/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Difração de Raios X
16.
Nanomedicine ; 19: 22-38, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002932

RESUMO

The coatings application onto medical devices has experienced a continuous growth in the last few years. Medical device coating market is expected to grow at a CAGR of 5.16% to reach USD 10 million by 2023 due to the increasing geriatric population and the growing demand for continuous innovation. Layer-by-Layer (LbL) assembly represents a versatile method to modify the surface properties, in order to control cell interaction and thus enhance biological functions. Furthermore, LbL is environmentally friendly, able to coat all types of surfaces with the creation of homogenous film and to include and control the release of biomolecules/drugs. This feature review provides a critical overview on recent progresses in functionalizing materials by LbL assembly for bone regeneration and disorder treatment. An overview of emerging and visionary opportunities on LbL technologies and further combination with other existing methods used in biomedical field, is also discussed to evidence the new challenges and potential developments in bone regenerative medicine.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/fisiologia , Nanoestruturas/química , Sequência de Aminoácidos , Animais , Humanos , Nanoestruturas/ultraestrutura , Peptídeos/química , Cicatrização
17.
Biofabrication ; 11(1): 015014, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30524040

RESUMO

Advances in three-dimensional cell cultures offer new opportunities in biomedical research and drug development. However, there are still challenges to overcome, including the lack of reliability, repeatability and complexity of tissues obtained by these techniques. In this study, we describe a new bioprinting system called reactive jet impingement (ReJI) for the bioprinting of cell-laden hydrogels. Droplets of gel precursor solutions are jetted at one another such that they meet and react in mid-air before the gel droplets fall to the substrate. This technique offers a combination of deposition rate, cell density and cell viability which is not currently matched by any other bioprinting technique. The importance of cell density is demonstrated in the development of bone microtissues derived from immortalised human bone marrow stem cells. The cells were printed with high viability within a collagen-alginate-fibrin gel, and tissue specific gene expression shows significantly higher tissue maturation rates using the ability of the ReJI system to deposit gels with a high cell density.


Assuntos
Bioimpressão/métodos , Células da Medula Óssea/citologia , Osso e Ossos/citologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos/química , Bioimpressão/instrumentação , Contagem de Células , Sobrevivência Celular , Colágeno/química , Humanos , Impressão Tridimensional , Engenharia Tecidual/instrumentação
18.
Int J Mol Sci ; 19(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899285

RESUMO

Cartilage lesions of the knee are common disorders affecting people of all ages; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral defect appears. Osteochondral (OC) tissue compromises soft cartilage over hard subchondral bone with a calcified cartilage interface between these two tissues. Osteochondral defects can be caused by numerous factors such as trauma and arthritis. Tissue engineering offers the possibility of a sustainable and effective treatment against osteochondral defects, where the damaged tissue is replaced with a long-lasting bio-manufactured replacement tissue. This review evaluates both bi-phasic and multi-phasic scaffold-based approaches of osteochondral tissue regeneration, highlighting the importance of having an interface layer between the bone and cartilage layer. The significance of a biomimetic approach is also evidenced and shown to be more effective than the more homogenous design approach to osteochondral scaffold design. Recent scaffold materials and manufacturing techniques are reviewed as well as the current clinical progress with osteochondral regeneration scaffolds.


Assuntos
Materiais Biomiméticos/química , Regeneração Óssea , Cartilagem Articular/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Humanos
19.
Materials (Basel) ; 10(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28773053

RESUMO

Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)-graft-collagen (PCL-g-Coll) copolymer. We combine its good mechanical and biodegradable PCL properties with the great biological properties of type I collagen as a functional material for TE. PCL, previously dissolved in dimethylformamide/dichloromethane mixture, and reacted with collagen using carbodiimide coupling chemistry. The synthesised material was characterised physically, chemically and biologically, using pure PCL and PCL/Coll blend samples as control. Infrared spectroscopy evidenced the presence of amide I and II peaks for the conjugated material. Similarly, XPS evidenced the presence of C-N and N-C=O bonds (8.96 ± 2.02% and 8.52 ± 0.63%; respectively) for PCL-g-Coll. Static contact angles showed a slight decrease in the conjugated sample. However, good biocompatibility and metabolic activity was obtained on PCL-g-Coll films compared to PCL and blend controls. After 3 days of culture, fibroblasts exhibited a spindle-like morphology, spreading homogeneously along the PCL-g-Coll film surface. We have engineered a functional biosynthetic polymer that can be processed by electrospinning.

20.
Colloids Surf B Biointerfaces ; 159: 445-453, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28837894

RESUMO

This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Teste de Materiais/métodos , Membranas Artificiais , Poliésteres/química , Ácido Hialurônico/química , Iminas/química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polietilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA