Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 233: 116489, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385417

RESUMO

Drylands are fragile environments that should be carefully managed to improve their quality and functions to achieve sustainable development. Their major problems involve low availability of nutrients and soil organic carbon content. Biochar effect on soil is a joint response of micro to nano sized biochar and soil characteristics. In this review, we attempt to carry out a critical analysis of biochar application to enhance dryland soil quality. Correlating the effects identified from its soil application, we explored the subjects that remains open in the literature. The relation of composition-structure-properties of biochar vary among pyrolysis parameters and biomass sources. Limitations in soil physical quality in drylands, such as low water-holding capacity, can be alleviated by applying biochar at a rate of 10 Mg ha-1 also resulting in beneficial effects on soil aggregation, improved soil porosity, and reduced bulk density. Biochar addition can contribute to the rehabilitation of saline soils, by releasing cations able to displaces sodium in the exchange complex. However, the recovery process of salt-affected soils might be accelerated by the association of biochar with another soil conditioners. This is a promising strategy especially considering the biochar alkalinity and variability in nutrients bioavailability to improve soil fertilization. Further, while higher biochar application rate (>20 Mg ha-1) might change soil C dynamics, a combination of biochar and nitrogen fertilizer can increase microbial biomass carbon in dryland systems. Other aspect of biochar soil application is the economic viability of scale-up production, which is mainly associate to pyrolysis process being biochar production the costliest stage. Nevertheless, the supplying of feedstock might also represent a great input on biochar final costs. Therefore, biochar-based technology is a big opportunity to improve fragile environments such as drylands, integrating sustainable technologies with regional development. Considering the specificity of application area, it might be a model of sustainable agricultural practices protecting the environment in a bioeconomic perspective.


Assuntos
Carbono , Solo , Humanos , Carvão Vegetal , Ecossistema
2.
Funct Plant Biol ; 48(11): 1113-1123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34585660

RESUMO

Silver nanoparticle (AgNPs) toxicity is related to nanoparticle interaction with the cell wall of microorganisms and plants. This interaction alters cell wall conformation with increased reactive oxygen species (ROS) in the cell. With the increase of ROS in the cell, the dissolution of zero silver (Ag0) to ionic silver (Ag+) occurs, which is a strong oxidant agent to the cellular wall. AgNP interaction was evaluated by transmission electron microscopy (TEM) on Lactuca sativa roots, and the mechanism of passage through the outer cell wall (OCW) was also proposed. The results suggest that Ag+ binds to the hydroxyls (OH) present in the cellulose structure, thus causing the breakdown of the hydrogen bonds. Changes in cell wall structure facilitate the passage of AgNPs, reaching the plasma membrane. According to the literature, silver nanoparticles with an average diameter of 15nm are transported across the membrane into the cells by caveolines. This work describes the interaction between AgNPs and the cell wall and proposes a transport model through the outer cell wall.


Assuntos
Asteraceae , Nanopartículas Metálicas , Parede Celular , Lactuca , Nanopartículas Metálicas/toxicidade , Prata
3.
J Environ Manage ; 281: 111878, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388711

RESUMO

Sugarcane bagasse, vinasse and a mixture of sugarcane bagasse and vinasse were hydrothermally carbonized (HTC), with and without the addition of phosphoric acid, in order to propose new applications of sucroenergetic industry by-products on soil. Detailed information on the composition and properties of hydrochars has been obtained through elemental composition, thermogravimetric analysis, nuclear magnetic resonance and, thermochemolysis GC-MS. The soluble acidic fraction from the hydrochar samples were applied to maize seeds to evaluate the agronomic potential as biostimulants and relate the molecular features with maize seed germination. The HTC treatment converted polysaccharide-based biomasses into hydrochars with hydrophobic characteristics (C-Aryl and C-Akyl). Furthermore, the addition of phosphoric acid further increased the overall hydrophobicity and shifted the thermal degradation of the hydrochars to higher temperatures. Biomass influenced the hydrochars that formed, in which the molecular features of sugarcane bagasse determined the formation of more polar hydrochar, due to the preservation of lignin and phenolic components. Meanwhile, the HTC of vinasse resulted in a more hydrophobic product with an enrichment of condensed and recalcitrant organic fractions. The germination assay showed that polar structures of bagasse may play a role in improving the maize seeds germination rate (increase of ~11%), while the hydrophobic domains showed negative effects. The responses obtained in germination seems to be related to the molecular characteristics that organic extracts can present in solution.


Assuntos
Germinação , Saccharum , Carbono , Extratos Vegetais , Sementes , Temperatura , Zea mays
4.
Ecotoxicol Environ Saf ; 205: 111173, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853866

RESUMO

Fulvic acids (FA) are one of the components of humic substances and play an important role in the interaction with metallic species and, consequently, the bioavailability, distribution and toxicity of metals. However, only a few studies have investigated these FA properties in specific environment, such as anthropogenic soils. Therefore, knowledge about FA molecular composition as well as the FA-metal interaction is essential to predict their behavior in the soil. For this reason, the aim of this study was to investigate the molecular composition of FA extracted from two sites in an anthropogenic soil (Terra Mulata), from the Amazon region, as well as their interactions with Cu(II) ions as a model. Results from 13C NMR, infrared and elemental analysis showed that these FA are composed mostly by alkyl structures and oxygen-functional groups, e.g., hydroxyl, carbonyl and carboxyl. The interaction with Cu(II) ions was evaluated by fluorescence quenching, in which the FA showed both high quantity of complexing sites per gram of carbon and good affinity to interact with the metal when compared with other soil FA. The results showed that the complexation capacity was highly correlated by the content of functional groups, while the binding affinity was largely influenced by structural factors. In addition, through the lifetime decay given by time-resolved fluorescence, it was concluded that static quenching took place in FA and Cu(II) interaction with the formation of a non-fluorescent ground-state complex. Therefore, this fraction of soil organic matter will fully participate in complexation reactions, thereby influencing the mobility and bioavailability of metal in soils. Hence, the importance of the study, and the role of FA in the environment, can be seen especially in the Amazon, which is one of the most important biomes in the world.


Assuntos
Benzopiranos/análise , Complexos de Coordenação/análise , Cobre/análise , Substâncias Húmicas/análise , Poluentes do Solo/análise , Solo/química , Benzopiranos/química , Disponibilidade Biológica , Brasil , Carbono/análise , Complexos de Coordenação/química , Cobre/química , Fluorescência , Íons , Modelos Teóricos , Poluentes do Solo/química
5.
Chemosphere ; 256: 127110, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32464361

RESUMO

Organic matter plays many roles in the soil ecosystem. One property of the substance concerns the metal complexation and interaction with organic contaminants. In this sense, the humic substances (HS), a heterogeneous mixture of compounds, naturally derived from degradation of biomass, have been widely studied in environmental sciences. Recent advances showed a new way to produce humic-like substances (HLS) through hydrothermal carbonization of biomass. Thus, this study aimed to evaluate the HLS of hydrochars, produced by using a mixture of sugarcane bagasse and vinasse with sulfuric acid added (1 and 4% v/v), and to assess their interactions with metal ions, (Fe(III), Al(III), Cu(II) and Co(II)) using EEM-PARAFAC and a two-dimensional FTIR correlation analysis. The results were compared to the humic substances extracted from the Amazonian Anthrosol, as a model of anthropogenic organic matter. NMR analysis showed that humic-like extracts from hydrochar are mainly hydrophobic, while the soil has a greater contribution of polar moieties. The HLS and HS showed similar complexation capacities for Fe(III), Al(III) and Cu(II) assays. For Co(II) HLS exhibited larger affinities than HS. Two-dimensional correlation analysis FTIR showed that chemical groups may undergo conformational alteration with metal additions to achieve more stable arrangements (higher stability constant). Therefore, these results contribute more knowledge about the mechanism of HS and metal ion interaction, as well as showing that HTC can be an interesting option for HLS production, to be used as humic based materials.


Assuntos
Carvão Vegetal/química , Substâncias Húmicas/análise , Metais Pesados/química , Solo/química , Sítios de Ligação , Brasil , Ecossistema , Interações Hidrofóbicas e Hidrofílicas , Íons , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Sci Total Environ ; 722: 137815, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32179299

RESUMO

Humic acids (HA) play an important role in the distribution, toxicity, and bioavailability of metals in the environment. Humic-like acids (HLA) that simulate geochemical processes can be prepared by NaOH aqueous extraction from hydrochars produced by hydrothermal carbonization (HTC). HLA can exhibit properties such as those found in HA from soils, which are known for their ability to interact with inorganic and organic compounds. The molecular characteristics of HLA and HA help to explain the relationship between their molecular features and their interaction with metallic species. The aim of this study is to assess the molecular features of HA extracted from Terra Mulata (TM) and HLA from hydrochars as well as their interaction with metals by using Cu(II) ions as a model. The results from 13C NMR, elemental analysis, FTIR, and UV-Vis showed that HA are composed mostly of aromatic structures and oxygenated functional groups, whereas HLA showed a mutual contribution of aromatic and aliphatic structures as main constituents. The interactions of HA and HLA with Cu(II) ions were evaluated through fluorescence quenching, in which the density of complexing sites per gram of carbon for interaction was higher for HLA than for HA. Furthermore, the HLA showed similar values for stability constants, and higher than those found for other types of HA in the literature. In addition, the average lifetime in both humic extracts appeared to be independent of the copper addition, indicating that the main mechanism of interaction was static quenching with a non-fluorescent ground-state complex formation. Therefore, the HLA showed the ability to interact with Cu(II) ions, which suggests that their application can provide a new approach for remediation of contaminated areas.

7.
Sci Total Environ ; 708: 135000, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791776

RESUMO

Inspired by the presence of anthropogenic organic matter in highly fertile Amazonian Dark Earth (ADE), which is attributed to the transformation of organic matter over thousands of years, we explored hydrothermal carbonization as an alternative for humic-like substances (HLS) production. Hydrothermal carbonization of sugarcane industry byproducts (bagasse and vinasse) in the presence and absence of H3PO4 afforded HLS, which were isolated and compared with humic substances (HS) isolated from ADE in terms of molecular composition and maize seed germination activity. HLS isolated from sugarcane bagasse hydrochar produced in the presence or absence of H3PO4 comprised both hydrophobic and hydrophilic moieties, differing from other HLS mainly in terms of phenolic content, while HLS isolated from vinasse hydrochar featured hydrophobic structures mainly comprising aliphatic moieties. Compared to that of HLS, the structure of soil-derived HS reflected an increased contribution of fresh organic matter input and, hence, featured a higher content of O-alkyl moieties. HLS derived from lignocellulosic biomass were rich in phenolics and promoted maize seed germination more effectively than HLS comprising alkyl moieties. Thus, HLS isolated from bagasse hydrochar had the highest bioactivity, as the presence of amphiphilic moieties therein seemed to facilitate the release of bioactive molecules from supramolecular structures and stimulate seed germination. Based on the above results, the hydrothermal carbonization of lignocellulosic biomass was concluded to be a viable method of producing amphiphilic HLS for use as plant growth promoters.


Assuntos
Germinação , Zea mays , Carbono , Extratos Vegetais , Sementes
8.
Environ Sci Pollut Res Int ; 26(9): 9137-9145, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30715701

RESUMO

Hydrothermal carbonization transforms biomass into value-added material called hydrochar. The release of nutrients (P, N, Ca, Mg, and K) and organic carbon (TOC) from hydrochar in different extractive solutions was investigated in this study. Two sets of hydrochar were produced: (i) hydrochar prepared from sugarcane bagasse and vinasse mixture (BV-HC) and (ii) hydrochar prepared by the addition of H3PO4 to this mixture (BVA-HC). Both hydrochar types released significative amounts of nutrient and organic carbon, mainly Ca (5.0 mg g-1) in the mixture (KCl, K2SO4, NaOH, 1:1:1) extractive solution and TOC (72.6 mg g-1) in the NaOH extractive solution, for BV-HC. Nutrient release was influenced by pH and ionic strength. The release of P, Ca, and Mg was affected by the presence of insoluble phosphate phases in BVA-HC. The release of nutrients P, N, Ca, Mg, and K and organic carbon demonstrated that hydrochar has potential for soil application purposes.


Assuntos
Carbono/análise , Resíduos Industriais/análise , Nutrientes/análise , Extratos Vegetais/análise , Saccharum/química , Resíduos/análise , Cálcio/análise , Cálcio/isolamento & purificação , Carbono/isolamento & purificação , Celulose/química , Nutrientes/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Solo/química
9.
Environ Sci Pollut Res Int ; 26(27): 27579-27589, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29594880

RESUMO

Hydrothermal carbonization (HTC) is a thermochemical process carried out in an aqueous medium. It is capable of converting biomass into a solid, carbon-rich material (hydrochar), and producing a liquid phase (process water) which contains the unreactive feedstock and/or chemical intermediates from the carbonization reaction. The aim of this study was to evaluate the characteristics of process water generated by HTC from vinasse and sugarcane bagasse produced by sugarcane industry and to evaluate its toxicity to both marine (using Artemia salina as a model organism) and the terrestrial environment (through seed germination studies of maize, lettuce, and tomato). The experiments showed that concentrated process water completely inhibited germination of maize, lettuce, and tomato seeds. On the other hand, diluted process water was able to stimulate seedlings of maize and tomato and enhance root and shoot growth. For Artemia, the LC50 indicated that the process water is practically non-toxic; however, morphological changes, especially damages to the digestive tube and antennas of Artemia, were observed for the concentration of 1000 mg C L-1.


Assuntos
Carbono/química , Saccharum/química , Biomassa , Germinação , Indústrias , Lactuca/química , Solanum lycopersicum/química , Sementes/química , Água , Zea mays/química
10.
Bioresour Technol ; 237: 213-221, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28433583

RESUMO

In this study, nutrients were immobilized on the hydrochars obtained by hydrothermal carbonization (HTC) of a vinasse and sugarcane bagasse mixture, in the presence of acid, base and salt additives at temperatures of 150, 190 and 230°C. The increase in temperature caused higher immobilization of Ca, Mg, K, N, Cu, Mn, Zn, B, P and Fe in all hydrochars produced. H3PO4 and NaOH immobilized higher amounts of P, Mg and Mn, while Ca was immobilized in higher quantities in the presence of H3PO4 and (NH4)2SO4. The addition of H2SO4, H3PO4 and (NH4)2SO4 was responsible for an increased immobilization of P, N, Ca, Mg and K. The immobilization of B, not present in the starting raw material, was possible with the addition of H3BO3. The results showed that it is possible to alter the reaction medium to immobilize nutrients on hydrochars produced from vinasse and sugarcane bagasse, for agricultural applications.


Assuntos
Eliminação de Resíduos , Saccharum , Nitrogênio , Fósforo , Temperatura
11.
Bioorg Med Chem ; 15(17): 5752-9, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17583516

RESUMO

The inclusion complexation of pyrimethamine in 2-hydroxypropyl-beta-cyclodextrin has been investigated by 2D (1)H NMR, FTIR and UV/visible spectroscopy and also by molecular modelling methods (AM1, PM3, MM3). From the phase-solubility diagram a linear increase was observed in pyrimethamine aqueous solubility in the presence of 2-hydroxypropyl-beta-cyclodextrin, evidencing the formation of a soluble inclusion complex. According to the continuous variation method (Job's plot) applied to fluorescence measurements, a 1:1 stoichiometry has been proposed for the complex. Concerning the structure of the complex, a Cl-in orientation of pyrimethamine in the 2-hydroxypropyl-beta-cyclodextrin cavity has been proposed from the theoretical calculations, being confirmed by two-dimensional (1)H NMR spectroscopy (ROESY). The thermal behaviour has also been studied, providing complementary evidences of complex formation.


Assuntos
Pirimetamina/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Varredura Diferencial de Calorimetria , Modelos Moleculares , Estrutura Molecular , Solubilidade , Espectrofotometria , Termogravimetria , Difração de Raios X
12.
Chemosphere ; 62(1): 80-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15936056

RESUMO

Layered double hydroxides (LDHs) or hydrotalcite (HT)-like compounds with different kinds of metal ions (Mg-Al and Mg-Fe) in the brucite-like sheets were prepared and their adsorption properties were studied in the boron removal from aqueous solution under laboratory conditions. The hydrotalcites were synthesized by the coprecipitation method and were characterized by chemical analyses, X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and specific surface area measurements (BET). The affinity of these materials with a mixture of B(OH)(3) and B(OH)(4)(-) was studied as a function of contact time, initial pH of the solutions, HT quantity and B concentration (adsorption isotherms). It was found that 120 min is enough time for the equilibrium state to be reached in boron adsorption. Boron removal was independent of the initial pH of the solutions because of the high buffering capacity of the LDHs. On the other hand, the adsorption capacity increases with increasing the adsorbent quantity. The adsorption isotherms, described by the Langmuir model, are of L-type, suggesting that B(OH)(4)(-) is adsorbed preferentially on HT-like materials. Besides, Mg-Al hydrotalcites showed higher adsorption capacity than Mg-Fe. We proposed that in Mg-Al hydrotalcites, the boron removal occurs by both adsorption on external surface and ion exchange, whereas for Mg-Fe it occurs only by surface adsorption. After treatment of a solution containing 5.2 mgBl(-1) with Mg-Al hydrotalcites the final boron concentration reached the recommended limit by WHO for drinking water (0.5 mgl(-1)).


Assuntos
Hidróxido de Alumínio/química , Compostos de Boro/análise , Hidróxido de Magnésio/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA