Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1116917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911186

RESUMO

Electrospinning emerged as a promising technique to produce scaffolds for cultivated meat in function of its simplicity, versatility, cost-effectiveness, and scalability. Cellulose acetate (CA) is a biocompatible and low-cost material that support cell adhesion and proliferation. Here we investigated CA nanofibers, associated or not with a bioactive annatto extract (CA@A), a food-dye, as potential scaffolds for cultivated meat and muscle tissue engineering. The obtained CA nanofibers were evaluated concerning its physicochemical, morphological, mechanical and biological traits. UV-vis spectroscopy and contact angle measurements confirmed the annatto extract incorporation into the CA nanofibers and the surface wettability of both scaffolds, respectively. SEM images revealed that the scaffolds are porous, containing fibers with no specific alignment. Compared with the pure CA nanofibers, CA@A nanofibers showed increased fiber diameter (420 ± 212 nm vs. 284 ± 130 nm). Mechanical properties revealed that the annatto extract induces a reduction of the stiffness of the scaffold. Molecular analyses revealed that while CA scaffold favored C2C12 myoblast differentiation, the annatto-loaded CA scaffold favored a proliferative state of these cells. These results suggest that the combination of cellulose acetate fibers loaded with annatto extract may be an interesting economical alternative for support long-term muscle cells culture with potential application as scaffold for cultivated meat and muscle tissue engineering.

2.
Mater Sci Eng C Mater Biol Appl ; 118: 111322, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254960

RESUMO

In this study we prepared annatto-loaded cellulose acetate nanofiber scaffolds and evaluated both in vitro cytotoxicity and potential for wound healing in a rat model. Annatto extract, which has been used to accelerate wound healing, was added to cellulose acetate polymer and the resulting material was used to produce nanofiber scaffolds via electrospinning. Physicochemical, and thermal evaluation of the resulting nanofiber mats showed that incorporating annatto did not significantly affect the thermal or chemical stability of the polymer. Annatto extract did not demonstrate cytotoxicity in the HET-CAM assay or MTT assay for fibroblast culture. Scanning electron microscopy of the fibroblasts confirmed that cells spread and penetrated into the nanofiber. In vivo experiments confirmed that cellulose acetate retained its biocompatibility when associated with crude annatto extract, and suggested that dose/response modulation occurs between the annatto-functionalized nanofibers and mast cells, indicating the potential of this material for wound healing applications.


Assuntos
Nanofibras , Animais , Bixaceae , Carotenoides , Celulose/análogos & derivados , Extratos Vegetais/farmacologia , Ratos , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA