Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Comput Struct Biotechnol J ; 21: 346-353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36582437

RESUMO

We report electron attachment (EA) measurements for the parent anion radical formation from coenzyme Q0 (CoQ0) at low electron energies (<2 eV) along with quantum chemical calculations. CoQ0 may be considered a prototype for the electron withdrawing properties of the larger CoQ n molecules, in particular ubiquinone (CoQ10), an electron carrier in aerobic cell respiration. Herein, we show that the mechanisms for the parent anion radical formation of CoQ0 and CoQ n (n = 1,2,4) are remarkably distinct. Reported EA data for CoQ1, CoQ2, CoQ4 and para-benzoquinone indicated stabilization of the parent anion radicals around 1.2-1.4 eV. In contrast, we observe for the yield of the parent anion radical of CoQ0 a sharp peak at âˆ¼ 0 eV, a shoulder at 0.07 eV and a peak around 0.49 eV. Although the mechanisms for the latter feature remain unclear, our calculations suggest that a dipole bound state (DBS) would account for the lower energy signals. Additionally, the isoprenoid side chains in CoQ n (n = 1,2,4) molecules seem to influence the DBS formation for these compounds. In contrast, the side chains enhance the parent anion radical stabilization around 1.4 eV. The absence of parent anion radical formation around 1.4 eV for CoQ0 can be attributed to the short auto-ionization lifetimes. The present results shed light on the underappreciated role played by the side chains in the stabilization of the parent anion radical. The isoprenoid tails should be viewed as co-responsible for the electron-accepting properties of ubiquinone, not mere spectators of electron transfer reactions.

2.
Phys Chem Chem Phys ; 24(17): 10025-10032, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35415729

RESUMO

Triphenylboroxine (TPB) has chemical properties of great interest in organic synthesis, enabling the development of promising molecular architectures. Based on the possibility of the geometric arrangement of N-coordinated boron atoms, the dynamic interconversion ability of boroxine cages enables the optimization of relevant pharmacological properties in drug delivery, such as guest recognition and porosity. In addition, the synthesis of a novel 2D boroxine framework showed distinctive electronic and morphological properties that can be used in the design of new electronic devices. In the present study, the electron-driven fragmentation pathways from electron interactions with TPB using a gas-phase crossed-beam experiment have been investigated. The abundance of the molecular parent cation in the mass spectrum at 70 eV reflects the stability of TPB. The appearance energies of three fragment cations were reported, and the experimental first ionization potential was found at 9.12 ± 0.10 eV. Only the parent cation is formed in the energy range (∼9-16 eV) between the first ionization potential and the remaining thresholds. Regarding negative ion formation, four low-abundant anions in the electron energy range of 0-15 eV are discussed. These results indicate an interesting energy selectivity and stability of TPB upon electron interaction, which may justify the development of recent molecular architectures containing TPB used in a wide range of applications. These results are supported by quantum chemical calculations based on bound state techniques, electron ionization models and thermodynamic thresholds.

3.
Phys Chem Chem Phys ; 23(3): 2141-2153, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33437976

RESUMO

We report a comprehensive study on the electronic excited states of tetrafluoro-1,4-benzoquinone, through high-resolution vacuum ultraviolet photoabsorption spectroscopy and time-dependent density functional theory calculations performed within the nuclear ensemble approach. Absolute cross section values were experimentally determined in the 3.8-10.8 eV energy range. The present experimental results represent the highest resolution data yet reported for this molecule and reveal previously unresolved spectral structures. The interpretation of the results was made in close comparison with the available data for para-benzoquinone [Jones et al., J. Chem. Phys., 2017, 146, 184303]. While the dominant absorption features for both molecules arise from analogous π* ← π transitions, some remarkable differences have been identified. The perfluoro effect manifests in different ways: shifts in band positions and cross sections, appearance of features associated with excitations to σCF* orbitals, and spectrum broadening by quenching of either vibrational or Rydberg progressions. The level of agreement between experiment and theory is very satisfactory, yet that required the inclusion of nuclear quantum effects in the calculations. We have also discussed the role of temperature on the absorption spectrum, as well as the involvement of core-excited resonances in promoting dissociative electron attachment reactions in the 3-5 eV range.

4.
Phys Chem Chem Phys ; 22(41): 23837-23846, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33073277

RESUMO

We present novel experimental results of negative ion formation of halothane (C2HBrClF3) upon electron transfer from hyperthermal neutral potassium atoms (K°) in the collision energy range of 8-1000 eV. The experiments were performed in a crossed molecular beam setup allowing a comprehensive analysis of the time-of-flight (TOF) mass negative ions fragmentation pattern and a detailed knowledge of the collision dynamics in the energy range investigated. Such TOF mass spectra data show that the only negative ions formed are Br-, Cl- and F-, with a strong energy dependence in the low-energy collision region, with the bromine anion being the most abundant and sole fragment at the lowest collision energy probed. In addition, potassium cation (K+) energy loss spectra in the forward scattering direction were obtained in a hemispherical energy analyser at different K° impact energies. In order to support our experimental findings, ab initio quantum chemical calculations have been performed to help interpret the role of the electronic structure of halothane. Potential energy curves were obtained along the C-X (X = Br, Cl) coordinate to lend support to the dissociation processes yielding anion formation.

5.
Phys Chem Chem Phys ; 22(15): 8171-8181, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32249870

RESUMO

Benzaldehyde is a simple aromatic aldehyde and has a wide range of applications in the food, pharmaceutical, and chemical industries. The positive electron affinity of this compound suggests that low-energy electrons can be easily trapped by neutral benzaldehyde. In the present study, we investigated the formation of negative ions following electron attachment to benzaldehyde in the gas-phase. Calculations on elastic electron scattering from benzaldehyde indicate a π* valence bound state of the anion at -0.48 eV and three π* shape resonances (0.78, 2.48 and 5.51 eV). The excited state spectrum of the neutral benzaldehyde is also reported to complement our findings. Using mass spectrometry, we observed the formation of the intact anionic benzaldehyde at ∼0 eV. We ascribe the detection of the benzaldehyde anion to stabilization of the π* valence bound state upon dissociative electron attachment to a benzaldehyde dimer. In addition, we report the cross sections for nine fragment anions formed through electron attachment to benzaldehyde. Investigations carried out with partially deuterated benzaldehyde show that the hydrogen loss is site-selective with respect to the incident electron energy. In addition, we propose several dissociation pathways, backed up by quantum chemical calculations on their thermodynamic thresholds. The threshold calculations also support that the resonances formed at higher energies lead to fragment anions observable by mass spectrometry, whereas the resonances at low electron energies decay only by electron autodetachment.

6.
J Chem Phys ; 151(18): 184302, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31731857

RESUMO

We present a comprehensive revisited experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectrum of ammonia, NH3, covering for the first time the full 5.4-10.8 eV energy-range, with absolute cross sections determined. The calculations on the vertical excitation energies and oscillator strengths were performed using the equation-of-motion coupled cluster method restricted to single and double excitation levels and used to help reanalyze the observed Rydberg structures in the photoabsorption spectrum. The VUV spectrum reveals several new features that are not previously reported in the literature, with particular reference to the vibrational progressions of the (D̃1E'←X̃1A1 '), the (F̃1E'←X̃1A1 '), and the (G̃1A2 ″←X̃1A1 ') absorption bands. In addition, new Rydberg members have been identified in nda1 '←1a2 ″D̃''1A2 ″←X̃1A1 ', where n > 3 has not been reported before as well as in nde″←1a2 ″F̃1E'←X̃1A1 ' and in nsa1 '←1a2 ″G̃1A2 ″←X̃1A1 '. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of ammonia in the Earth's atmosphere (0-50 km).

7.
J Chem Phys ; 151(12): 124306, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575183

RESUMO

We report an experimental and theoretical investigation into the dynamics of electron-impact ionization of R-carvone. Experimental triple differential cross sections are obtained in asymmetric coplanar kinematic conditions for the ionization of the unresolved combination of the three outermost molecular orbitals (41a-39a) of R-carvone. These cross sections are compared with theoretical cross sections calculated within a molecular 3-body distorted wave (M3DW) framework employing either a proper orientation average or orbital average to account for the random orientation of the molecule probed in the experiment. Here, we observe that the overall scattering behavior observed in the experiment is fairly well reproduced within the M3DW framework when implementing the proper average over orientations. The character of the ionized orbitals also provides some qualitative explanation for the observed scattering behavior. This represents substantial progress when trying to describe the scattering dynamics observed for larger molecules under intermediate-impact energy and asymmetric energy sharing scattering conditions.

8.
J Chem Phys ; 151(8): 084310, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470731

RESUMO

Measurements of the total electron scattering cross sections (TCSs) from benzene, in the impact energy range of 1-1000 eV, are presented here by combining two different experimental systems. The first utilizes a magnetically confined electron transmission beam for the lower energies (1-300 eV), while the second utilizes a linear transmission beam apparatus for the higher energies (100-1000 eV). These cross sections have also been calculated by means of two different theoretical methods, the Schwinger Multichannel with Pseudo Potential (SMCPP) procedure, employing two different approaches to account for the polarization of the target for impact energies between 0.1 and 15 eV, and the Independent Atom Model with the Screening Corrected Additivity Rule including Interference effect (IAM-SCAR+I) paradigm to cover the 10-10 000 eV impact energy range. The present results are compared with available theoretical and experimental data, with the level of accord being good in some cases and less satisfactory in others, and some predicted resonances have been identified. In particular, we found a π* shape resonance at 1.4 eV and another feature in the energy region 4.6-4.9 eV interpreted as a π* resonance (2B2g symmetry), which is a mixture of shape and a core excited resonance, as well as a Feshbach resonance at 5.87 eV associated with the 3s (a1g) Rydberg state. A Born-type formula to extrapolate TCS values for energies above 10 000 eV is also given. This study provides a complete set of TCS data, with uncertainty limits within 10%, ready to be used for modeling electron transport applications.

9.
J Chem Phys ; 150(6): 064303, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769978

RESUMO

The absolute photoabsorption cross sections for thiophene in the 5.0-10.7 eV range were measured using synchrotron radiation. New theoretical calculations performed at the time-dependent density functional theory level were used to qualitatively interpret the recorded photoabsorption spectrum. The calculations facilitated a re-analysis of the observed vibronic and Rydberg structures in the photoabsorption spectrum. Here a number of features have been re-assigned, while a number of other features have been assigned for the first time. This represents the most comprehensive and self-consistent assignment of the thiophene high-resolution photoabsorption spectrum to date.

10.
J Chem Phys ; 149(16): 164307, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384761

RESUMO

5-trifluoromethanesulfonyl-uracil (OTfU), a recently proposed radiosensitizer, is decomposed in the gas-phase by attachment of low-energy electrons. OTfU is a derivative of uracil with a triflate (OTf) group at the C5-position, which substantially increases its ability to undergo effective electron-induced dissociation. We report a rich assortment of fragments formed upon dissociative electron attachment (DEA), mostly by simple bond cleavages (e.g., dehydrogenation or formation of OTf-). The most favorable DEA channel corresponds to the formation of the triflate anion alongside with the reactive uracil-5-yl radical through the cleavage of the O-C5 bond, particularly at about 0 eV. Unlike for halouracils, the parent anion was not detected in our experiments. The experimental findings are accounted by a comprehensive theoretical study carried out at the M06-2X/aug-cc-pVTZ level. The latter comprises the thermodynamic thresholds for the formation of the observed anions calculated under the experimental conditions (383.15 K and 3 × 10-11 atm). The energy-resolved ion yield of the dehydrogenated parent anion, (OTfU-H)-, is discussed in terms of vibrational Feshbach resonances arising from the coupling between the dipole bound state and vibrational levels of the transient negative ion. We also report the mass spectrum of the cations obtained through ionization of OTfU by electrons with a kinetic energy of 70 eV. The current study endorses OTfU as a potential radiosensitizer agent with possible applications in radio-chemotherapy.


Assuntos
Elétrons , Radiossensibilizantes/química , Uracila/química , Estrutura Molecular , Termodinâmica , Uracila/metabolismo
11.
Braz J Med Biol Res ; 51(11): e7356, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30304130

RESUMO

Essential oils (EO) are volatile liquids responsible for the aroma of plants. Pterodon polygalaeflorus seeds have received widespread use in folk medicine for the treatment of inflammatory diseases. For this reason and because Pterodon polygalaeflorus seeds have great EO content, which is frequently pharmacologically active, the present study aimed to evaluate the antinociceptive effect of EO from Pterodon polygalaeflorus (EOPPgfl) and its acute toxic effects. The EEOPPgfl sample, which was extracted by steam distillation of the seeds, had a yield of 2.4% of the seeds weight and had, as major constituents, beta-elemene (48.19%), trans-caryophyllene (19.51%), and epi-bicyclosesquiphellandrene (12.24%). The EOPPgfl sample showed mild acute toxicity and its calculated median lethal dose (LD50) was 3.38 g/kg. EOPPgfl (20-60 mg/kg) showed antinociceptive activity as evidenced by several tests and inhibited writhing induced by acetic acid. The maximum effect was obtained with the 30 mg/kg dose and at 60 min after its administration. EOPPgfl also decreased formalin-induced nociception, as verified by the inhibition of the first and second phase of the formalin test. At 30 mg/kg, EOPPgfl also decreased thermally stimulated nociception. Nociception may be related to inflammatory and antiedematogenic activity and at doses ranging 10-100 mg/kg, EOPPgfl blocked dextran- and carrageenan-induced edema. The results demonstrated that EOPPgfl presented, at doses approximately 100 times smaller than LD50, an antinociceptive effect that probably was due to anti-inflammatory activities.


Assuntos
Analgésicos/farmacologia , Fabaceae/química , Nociceptividade/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Camundongos , Medição da Dor , Distribuição Aleatória , Reprodutibilidade dos Testes , Sementes/química , Fatores de Tempo , Resultado do Tratamento
12.
J Phys Chem A ; 122(41): 8191-8197, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231614

RESUMO

We report a combined experimental and theoretical study of the electronic state spectroscopy of acrylic acid (C3H4O2) in the gas phase, by high-resolution vacuum ultraviolet (VUV) photoabsorption measurements in the 4.0-10.8 eV energy range, together with ab initio calculations (vertical energies and oscillator strengths), which were used in the assignment of the valence transitions. We also discuss the Rydberg transitions for this molecular target, obtained using the experimental ionization energies available in the literature. The experimental spectrum presented in this paper represents the highest resolution data yet reported for acrylic acid and reveals new features not previously reported in the literature. The dominant transitions have been assigned to (π*(4a″) ← π(3a″)) and (π*(4a″) ← π(2a″)), the latter exhibiting excitation of the ν5'( a') C = O stretching mode with mean energy of 0.155 eV. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of acrylic acid in the upper stratosphere (20-50 km).

13.
Phys Chem Chem Phys ; 20(34): 22368-22378, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30129642

RESUMO

Total electron scattering cross sections, from para-benzoquinone, for impact energies ranging between 1 to 200 eV, have been obtained by measuring the attenuation of a linear electron beam under magnetic confinement conditions. Random uncertainty limits on these values have been found to be within 5%. Systematic errors, due to the axial magnetic beam conditions in combination with the acceptance angle of the detector, have been evaluated by integrating our calculated independent atom model with the screening corrected additivity rule and interference term elastic differential cross sections over that detection acceptance angle. Our previous calculations and measurements on this molecule (Jones et al., J. Chem. Phys., 2018, 148, 124312 and J. Chem. Phys., 2018, 148, 204305), have been compiled and complemented with new elastic and inelastic scattering cross section calculations in order to obtain a comprehensive cross section data base, within the considered energy range, for modelling purposes. The self-consistency of the present data set has been evaluated by simulating the electron transport of 15 eV electrons in para-benzoquinone, and comparing those results with the observed transmitted intensity distribution.

14.
Rev Sci Instrum ; 89(6): 063105, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29960528

RESUMO

A novel experimental setup has been implemented to provide accurate electron scattering cross sections from molecules at low and intermediate impact energies (1-300 eV) by measuring the attenuation of a magnetically confined linear electron beam from a molecular target. High-resolution electron energy is achieved through confinement in a magnetic gas trap where electrons are cooled by successive collisions with N2. Additionally, we developed and present a method to correct systematic errors arising from energy and angular resolution limitations. The accuracy of the entire measurement procedure is validated by comparing the N2 total scattering cross section in the considered energy range with benchmark values available in the literature.

15.
J Chem Phys ; 148(13): 134301, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626890

RESUMO

We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.

16.
J Chem Phys ; 148(12): 124312, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604872

RESUMO

Angle resolved electron energy loss spectra (EELS) for para-benzoquinone (C6H4O2) have been recorded for incident electron energies of 20, 30, and 40 eV. Measured differential cross sections (DCSs) for electronic band features, composed of a combination of energetically unresolved electronic states, are subsequently derived from those EELS. Where possible, the obtained DCSs are compared with those calculated using the Schwinger multichannel method with pseudopotentials. These calculations were performed using a minimum orbital basis single configuration interaction framework at the static exchange plus polarisation level. Here, quite reasonable agreement between the experimental cross sections and the theoretical cross sections for the summation of unresolved states was observed.

17.
J Chem Phys ; 148(2): 021101, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29331144

RESUMO

This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.


Assuntos
Adenina/química , Transporte de Elétrons , Hidrogênio/química , Espectrometria de Massas , Conformação de Ácido Nucleico
18.
Braz. j. med. biol. res ; 51(11): e7356, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951728

RESUMO

Essential oils (EO) are volatile liquids responsible for the aroma of plants. Pterodon polygalaeflorus seeds have received widespread use in folk medicine for the treatment of inflammatory diseases. For this reason and because Pterodon polygalaeflorus seeds have great EO content, which is frequently pharmacologically active, the present study aimed to evaluate the antinociceptive effect of EO from Pterodon polygalaeflorus (EOPPgfl) and its acute toxic effects. The EEOPPgfl sample, which was extracted by steam distillation of the seeds, had a yield of 2.4% of the seeds weight and had, as major constituents, beta-elemene (48.19%), trans-caryophyllene (19.51%), and epi-bicyclosesquiphellandrene (12.24%). The EOPPgfl sample showed mild acute toxicity and its calculated median lethal dose (LD50) was 3.38 g/kg. EOPPgfl (20-60 mg/kg) showed antinociceptive activity as evidenced by several tests and inhibited writhing induced by acetic acid. The maximum effect was obtained with the 30 mg/kg dose and at 60 min after its administration. EOPPgfl also decreased formalin-induced nociception, as verified by the inhibition of the first and second phase of the formalin test. At 30 mg/kg, EOPPgfl also decreased thermally stimulated nociception. Nociception may be related to inflammatory and antiedematogenic activity and at doses ranging 10-100 mg/kg, EOPPgfl blocked dextran- and carrageenan-induced edema. The results demonstrated that EOPPgfl presented, at doses approximately 100 times smaller than LD50, an antinociceptive effect that probably was due to anti-inflammatory activities.


Assuntos
Animais , Coelhos , Óleos de Plantas/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Nociceptividade/efeitos dos fármacos , Analgésicos/farmacologia , Fabaceae/química , Sementes/química , Fatores de Tempo , Medição da Dor , Distribuição Aleatória , Reprodutibilidade dos Testes , Resultado do Tratamento , Anti-Inflamatórios/farmacologia
19.
Braz J Med Biol Res ; 50(12): e6351, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29069226

RESUMO

Lippia sidoides Cham is a typical herb species of Northeast Brazil with widespread use in folk medicine. The major constituents of the essential oil of L. sidoides (EOLs) are thymol, p-cymene, myrcene, and caryophyllene. Several studies have shown that the EOLs and its constituents have pharmacological effects, including antibacterial, anti-inflammatory, antioxidant and neuroprotective activity. Therefore, this work aimed to investigate the effects of the EOLs and their main constituents on rat sciatic nerve excitability. The sciatic nerves of adult Wistar rats were dissected and mounted in a moist chamber. Nerves were stimulated by square wave pulses, with an amplitude of 40 V, duration of 100 µs to 0.2 Hz. Both EOLs and thymol inhibited compound action potential (CAP) in a concentration-dependent manner. Half maximal inhibitory concentration for CAP peak-to-peak amplitude blockade were 67.85 and 40 µg/mL for EOLs and thymol, respectively. CAP peak-to-peak amplitude was significantly reduced by concentrations ≥60 µg/mL for EOLs and ≥30 µg/mL for thymol. EOLs and thymol in the concentration of 60 µg/mL significantly increased chronaxie and rheobase. The conduction velocities of 1st and 2nd CAP components were also concentration-dependently reduced by EOLs and thymol in the range of 30-100 µg/mL. Differently from EOLs and thymol, p-cymene, myrcene and caryophyllene did not reduce CAP in the higher concentrations of 10 mM. These data demonstrated that EOLs and thymol inhibited neuronal excitability and were promising agents for the development of new drugs for therapeutic use.


Assuntos
Alcenos/farmacologia , Lippia/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Nervo Isquiático/efeitos dos fármacos , Sesquiterpenos/farmacologia , Timol/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Monoterpenos Acíclicos , Animais , Cimenos , Feminino , Masculino , Bloqueio Nervoso/métodos , Condução Nervosa/efeitos dos fármacos , Óleos Voláteis/química , Sesquiterpenos Policíclicos , Ratos Wistar , Reprodutibilidade dos Testes , Nervo Isquiático/fisiologia , Fatores de Tempo
20.
Phys Chem Chem Phys ; 19(2): 1083-1088, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27942639

RESUMO

Electron transfer in alkali-molecule collisions with gas phase acetic acid and its deuterated analogues resulting in OH- formation requires considerable internal rearrangement in the temporary negative ion. At a collision energy well above the threshold of negative ion formation, electron transfer from potassium to CH3COOH/CH3COOD and CD3COOH results not only in H transfer from CH3 to COOH/COOD, but also in H release from COOH and subsequent rearrangement to eliminate OH-. These processes are also investigated by theoretical post-Hartree-Fock and DFT calculations. The combination of both studies reveals that the most favourable intermediate mechanism occurs via diol formation. Such intramolecular H transfer is reported here for the first time in the context of electron transfer induced dissociation experiments in alkali-molecule collisions. A comprehensive fragmentation study is presented and dissociation mechanisms are suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA