Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 308(5): L464-78, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539853

RESUMO

Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln(+/+)) and Eln(+/-) littermates at baseline and after MV with air for 8-24 h. Lungs of unventilated Eln(+/-) mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln(+/+) pups. Eln(+/-) lungs contained fewer capillaries than Eln(+/+) lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln(+/+) neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln(+/-) mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln(+/-) than in Eln(+/+) pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln(+/-) compared with Eln(+/+) mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln(+/+) and Eln(+/-) mice. Paucity of lung capillaries in Eln(+/-) newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln(+/-) mice.


Assuntos
Elastina/metabolismo , Matriz Extracelular/metabolismo , Haploinsuficiência , Pulmão/patologia , Respiração Artificial , Remodelação Vascular , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Apoptose , Caderinas/metabolismo , Feminino , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/patologia , Microvasos/fisiopatologia , Elastase Pancreática/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia
2.
Cardiovasc Res ; 103(2): 291-303, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24866384

RESUMO

AIMS: Vascular permeability is essential for the health of normal tissues and is an important characteristic of many disease states. The role of the Wnt/frizzled pathway in vascular biology has recently been reported. The objectives of this study are to analyse the role of Frizzled7 (Fzd7) receptor in the control of vascular integrity. METHODS AND RESULTS: Fzd7 is expressed in endothelial cells and accumulates at the points of cell-cell contact in association with VE-cadherin and ß-catenin, two major adherens junction molecules. To selectively delete fzd7 in the vasculature, we developed gene targeting approaches using CreLox strategy in mice. Genetic fzd7 inhibition in the endothelium increases vascular permeability in basal and factor-induced conditions. On the cellular level, fzd7 knockdown or depletion leads to an increase in paracellular permeability with a loss of adherens junction organization. These impairments are associated with a decrease in both VE-Cadherin and ß-catenin expression, a decrease in their association and an increase of tyrosine phosphorylation of VE-cadherin/ß-catenin. Fzd7 transduces a Wnt/ß-catenin signalling cascade that is required to regulate ß-catenin and canonical target gene expression. Finally, LiCl, a GSK3 inhibitor, and ß-catenin overexpression rescued endothelial integrity and adherens junction organization, induced by fzd7 deletion. CONCLUSION: These findings establish that Fzd7 is a new partner of adherens junctional complex and represents a novel molecular switch for the control of vascular permeability via activation of the Wnt-canonical pathway.


Assuntos
Caderinas/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Comunicação Celular , Endotélio Vascular/metabolismo , Receptores Frizzled , Quinase 3 da Glicogênio Sintase/metabolismo , Junções Intercelulares/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais/fisiologia , beta Catenina/metabolismo
3.
Circ Res ; 110(1): 47-58, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22076635

RESUMO

RATIONALE: A growing body of evidence supports the hypothesis that the Wnt/planar cell polarity (PCP) pathway regulates endothelial cell proliferation and angiogenesis, but the components that mediate this regulation remain elusive. OBJECTIVE: We investigated the involvement of one of the receptors, Frizzled4 (Fzd4), in this process because its role has been implicated in retinal vascular development. METHODS AND RESULTS: We found that loss of fzd4 function in mice results in a striking reduction and impairment of the distal small artery network in the heart and kidney. We report that loss of fzd4 decreases vascular cell proliferation and migration and decreases the ability of the endothelial cells to form tubes. We show that fzd4 deletion induces defects in the expression level of stable acetylated tubulin and in Golgi organization during migration. Deletion of fzd4 favors Wnt noncanonical AP1-dependent signaling, indicating that Fzd4 plays a pivotal role favoring PCP signaling. Our data further demonstrate that Fzd4 is predominantly localized on the top of the plasma membrane, where it preferentially induces Dvl3 relocalization to promote its activation and α-tubulin recruitment during migration. In a pathological mouse angiogenic model, deletion of fzd4 impairs the angiogenic response and leads to the formation of a disorganized arterial network. CONCLUSIONS: These results suggest that Fzd4 is a major receptor involved in arterial formation and organization through a Wnt/PCP pathway.


Assuntos
Artérias/citologia , Polaridade Celular/fisiologia , Proliferação de Células , Receptores Frizzled/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Artérias/fisiologia , Arteríolas/citologia , Arteríolas/fisiologia , Movimento Celular/fisiologia , Proteínas Desgrenhadas , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Receptores Frizzled/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microtúbulos/fisiologia , Modelos Animais , Fosfoproteínas/fisiologia
4.
J Cell Biochem ; 106(3): 390-8, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19127540

RESUMO

Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross-talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co-culture between osteoblastic and endothelial cells. Through a well defined direct contact co-culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular-like structures. VEGF(165) gene expression was detected in the HOPs, was up-regulated in the co-cultured HOPs and both Flt-1 and KDR gene expression increased in co-cultured HUVECs. However, the cell rearrangement observed in co-culture was promoted by a combination of soluble chemoattractive factors and not by VEGF(165) alone. Despite having no observable effect on endothelial cell tubular-like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co-culture-stimulated osteoblastic phenotype. This co-culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering.


Assuntos
Comunicação Celular , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Ativação Enzimática , Regulação da Expressão Gênica/genética , Humanos , Microscopia Eletrônica de Varredura , RNA Mensageiro/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA