Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(11): 110501, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558938

RESUMO

The quantum Cramér-Rao bound is a cornerstone of modern quantum metrology, as it provides the ultimate precision in parameter estimation. In the multiparameter scenario, this bound becomes a matrix inequality, which can be cast to a scalar form with a properly chosen weight matrix. Multiparameter estimation thus elicits trade-offs in the precision with which each parameter can be estimated. We show that, if the information is encoded in a unitary transformation, we can naturally choose the weight matrix as the metric tensor linked to the geometry of the underlying algebra su(n), with applications in numerous fields. This ensures an intrinsic bound that is independent of the choice of parametrization.

2.
Phys Rev Lett ; 118(7): 070801, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256878

RESUMO

Every imaging system has a resolution limit, typically defined by Rayleigh's criterion. Given a fixed number of photons, the amount of information one can gain from an image about the separation between two sources falls to zero as the separation drops below this limit, an effect dubbed "Rayleigh's curse." Recently, in a quantum-information-inspired proposal, Tsang and co-workers found that there is, in principle, infinitely more information present in the full electromagnetic field in the image plane than in the intensity alone, and suggested methods for extracting this information and beating the Rayleigh limit. In this Letter, we experimentally demonstrate a simple scheme that captures most of this information, and show that it has a greatly improved ability to estimate the distance between a pair of closely separated sources, achieving near-quantum-limited performance and immunity to Rayleigh's curse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA