RESUMO
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review.
Assuntos
Sarcopenia , Humanos , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Antioxidantes/metabolismo , Vitaminas/metabolismoRESUMO
In this interdisciplinary study, we selected two compounds, namely, smenamide A, a peptide-polyketide, and smenolactone D, a polyketide, as models because they are representative of two different classes of molecules isolated from the marine sponge Smenospongia aurea. The organic extract of Smenospongia aurea was analyzed using a combination of high-resolution LC-MS/MS and molecular networking, a recently developed method for automated LC-MS data analysis. The analyses were targeted to highlight clusters made by chlorinated compounds present in the extracts. Then, the two model compounds were analyzed for their bioactivity. Data reported here show that smenamide A did not exhibit a cytotoxic effect, while smenolactone D was cytotoxic on different tumor cell lines and was able to induce different types of cell death, including ferroptosis and apoptosis.
Assuntos
Antineoplásicos , Neoplasias , Policetídeos , Poríferos , Animais , Cromatografia Líquida , Policetídeos/farmacologia , Policetídeos/metabolismo , Espectrometria de Massas em Tandem , Poríferos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Descoberta de Drogas , Neoplasias/tratamento farmacológicoRESUMO
Cannabis sativa var. Kompolti, a variety routinely used for food production purposes, is characterized by a low concentration of psychoactive molecules, although containing many other biologically attractive metabolites in all parts of the plant, including the roots. In the present work, we evaluate the specific biological activities of the roots' extract from plants cultivated through aeroponics, an affordable and reliable method facilitating the isolation and processing of roots, with the advantage of being suitable for industrial scale-up. Furthermore, aeroponics results in an increased net accumulation of the most biologically attractive constituents (ß-sitosterol, friedelin and epi-friedelanol) found in the roots. The ethanolic extract of the aeroponic roots of C. sativa (APEX) and its separate components are studied to evaluate their anti-inflammatory (modulation of the expression level of specific markers upon LPS stimulation in U937 cells, such as IL-6, IL-8, TNF-α, IkB-α, iNOS, IRAK-1 and miR-146a) and antioxidant (in either acellular or cellular settings) activities. The APEX anti-inflammatory and antioxidant capacities are also functionally benchmarked using the wound-healing assay. On the whole, the data obtained show that APEX and its main components showed significant anti-inflammatory and antioxidant activities, which may render the exploitation of roots as a source of natural antioxidants and anti-inflammatory agents highly attractive, with the additional technical and economic advantages of aeroponics compared to soil cultivation.
RESUMO
Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored.
RESUMO
In recent years, the improvement in health and social conditions has led to an increase in the average lifespan. Since aging is the most important risk factor for the majority of chronic human diseases, the development of therapies and intervention to stop, lessen or even reverse various age-related morbidities is an important target to ameliorate the quality of life of the elderly. The gut microbiota, that is, the complex ecosystem of microorganisms living in the gastrointestinal tract, plays an important role, not yet fully understood, in maintaining the host's health and homeostasis, influencing metabolic, oxidative and cognitive status; for this reason, it is also named "the forgotten endocrine organ" or "the second brain". On the other hand, the gut microbiota diversity and richness are affected by unmodifiable factors, such as aging and sex, and modifiable ones, such as diet, pharmacological therapies and lifestyle. In this review, we discuss the changes, mostly disadvantageous, for human health, induced by aging, in microbiota composition and the effects of dietary intervention, of supplementation with probiotics, prebiotics, synbiotics, psychobiotics and antioxidants and of physical exercise. The development of an integrated strategy to implement microbiota health will help in the goal of healthy aging.
Assuntos
Microbioma Gastrointestinal , Envelhecimento Saudável , Microbiota , Humanos , Idoso , Qualidade de Vida , PrebióticosRESUMO
Human gut microbiota physiologically and actively participates as a symbiont to a wide number of fundamental biological processes, such as absorption and metabolism of nutrients, regulation of immune response and inflammation; gut microbiota plays also an antitumor role. However, dysbiosis, resulting from a number of different situations-dysmicrobism, infections, drug intake, age, diet-as well as from their multiple combinations, may lead to tumorigenesis and is associated with approximately 20% of all cancers. In a diagnostic, prognostic, therapeutic, and epidemiological perspective, it is clear that the bifaceted role of microbiota needs to be thoroughly studied and better understood. Here, we discuss the anti- and pro-tumorigenic potential of gut and other microbiota districts along with the causes that may change commensal bacteria from friend to foes.
RESUMO
Cannabis sativa L. has been used for a long time to obtain food, fiber, and as a medicinal and psychoactive plant. Today, the nutraceutical potential of C.sativa is being increasingly reappraised; however, C. sativa roots remain poorly studied, despite citations in the scientific literature. In this direction, we identified and quantified the presence of valuable bioactives (namely, ß-sitosterol, stigmasterol, campesterol, friedelin, and epi-friedelanol) in the root extracts of C. sativa, a finding which might pave the way to the exploitation of the therapeutic potential of all parts of the C. sativa plant. To facilitate root harvesting and processing, aeroponic (AP) and aeroponic-elicited cultures (AEP) were established and compared to soil-cultivated plants (SP). Interestingly, considerably increased plant growth-particularly of the roots-and a significant increase (up to 20-fold in the case of ß-sitosterol) in the total content of the aforementioned roots' bioactive molecules were observed in AP and AEP. In conclusion, aeroponics, an easy, standardized, contaminant-free cultivation technique, facilitates the harvesting/processing of roots along with a greater production of their secondary bioactive metabolites, which could be utilized in the formulation of health-promoting and health-care products.
Assuntos
Cannabis/química , Cannabis/crescimento & desenvolvimento , Hidroponia , Colesterol/análogos & derivados , Colesterol/análise , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Fitosteróis/análise , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Sitosteroides/análise , Estigmasterol/análise , Triterpenos/análiseRESUMO
In recent years, natural compounds have emerged as inducers of non-canonical cell death. The isothiocyanate sulforaphane (SFN) is a well-known natural anticancer compound with remarkable pro-apoptotic activity. Its ability to promote non-apoptotic cell-death mechanisms remains poorly investigated. This work aimed to explore the capacity of SFN to induce non-apoptotic cell death modalities. SFN was tested on different acute myeloid leukemia cell lines. The mechanism of cell death was investigated using a multi-parametric approach including fluorescence microscopy, western blotting, and flow cytometry. SFN triggered different cell-death modalities in a dose-dependent manner. At 25 µM, SFN induced caspase-dependent apoptosis and at 50 µM ferroptosis was induced through depletion of glutathione (GSH), decreased GSH peroxidase 4 protein expression, and lipid peroxidation. In contrast, necroptosis was not involved in SFN-induced cell death, as demonstrated by the non-significant increase in phosphorylation of receptor-interacting protein kinase 3 and phosphorylation of the necroptotic effector mixed lineage kinase domain-like pseudokinase. Taken together, our results suggest that the antileukemic activity of SFN can be mediated via both ferroptotic and apoptotic cell death modalities.
RESUMO
Social isolation has adverse effects on mental health, physical exercise, and dietary habits. This longitudinal observational study aimed to investigate the effects of mood states and exercise on nutritional choices, on 176 college students (92 males, 84 females; 23 ± 4 years old) during the COVID-19 lockdown. During 21 days, nutrition and exercise were daily monitored, and the mood states assessed. A factor analysis was used to reduce the number of nutritional variables collected. The relationships between exercise, mood and nutrition were investigated using a multivariate general linear model and a mediation model. Seven factors were found, reflecting different nutritional choices. Exercise was positively associated with fruit, vegetables and fish consumption (p = 0.004). Depression and quality of life were, directly and inversely, associated with cereals, legumes (p = 0.005; p = 0.004) and low-fat meat intake (p = 0.040; p = 0.004). Exercise mediated the effect of mood states on fruit, vegetables and fish consumption, respectively, accounting for 4.2% and 1.8% of the total variance. Poorer mood states possibly led to unhealthy dietary habits, which can themselves be linked to negative mood levels. Exercise led to healthier nutritional choices, and mediating the effects of mood states, it might represent a key measure in uncommon situations, such as home-confinement.
Assuntos
Afeto , COVID-19 , Dieta/psicologia , Exercício Físico/psicologia , Comportamento Alimentar/psicologia , Pandemias , Isolamento Social/psicologia , Adolescente , Adulto , Depressão , Feminino , Humanos , Itália , Estilo de Vida , Estudos Longitudinais , Masculino , Saúde Mental , Qualidade de Vida , Quarentena , Estudantes , Inquéritos e Questionários , Universidades , Adulto JovemRESUMO
The adult gut microbiota contains trillions of microorganisms of thousands of different species. Only one third of gut microbiota are common to most people; the rest are specific and contribute to enhancing genetic variation. Gut microorganisms significantly affect host nutrition, metabolic function, immune system, and redox levels, and may be modulated by several environmental conditions, including physical activity and exercise. Microbiota also act like an endocrine organ and is sensitive to the homeostatic and physiological changes associated with training; in turn, exercise has been demonstrated to increase microbiota diversity, consequently improving the metabolic profile and immunological responses. On the other side, adaptation to exercise might be influenced by the individual gut microbiota that regulates the energetic balance and participates to the control of inflammatory, redox, and hydration status. Intense endurance exercise causes physiological and biochemical demands, and requires adequate measures to counteract oxidative stress, intestinal permeability, electrolyte imbalance, glycogen depletion, frequent upper respiratory tract infections, systemic inflammation and immune responses. Microbiota could be an important tool to improve overall general health, performance, and energy availability while controlling inflammation and redox levels in endurance athletes. The relationship among gut microbiota, general health, training adaptation and performance, along with a focus on sport supplements which are known to exert some influence on the microbiota, will be discussed.