Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203161

RESUMO

Birds are good indicators of environmental change and are often studied for responses to climate. Many studies focus on breeding birds, while fewer look at the migration period, which is a critical time for many birds. Birds are more susceptible to unusual climatic events during their migration due to the metabolic stress of long-distance movements. In the fall of 2020, an unusual cold weather event coupled with drought and wildfire smoke led to a large avian mortality event in New Mexico. Later analysis pointed to the mortality being largely due to starvation. This was the impetus for our research. We used 11 years of fall bird banding data from two locations, along with local drought indices, to determine what predicts avian health during the migration period. We used fat score data from over 15,000 individual birds to assess whether drought indices, age, diet, or residency influenced avian health using multiple logistic regression. We found that the probability of positive fat scores decreased as drought severity increased for younger, insectivorous, migratory birds. Insectivores had a higher probability of receiving a fat score greater than zero relative to local drought conditions, which is important, since many North American insectivores are in steep decline. Migratory birds showed a greater response than year-round residents, and older birds showed a lower but significant response compared to hatch-year birds. Our results suggest that migratory insectivores in the southwestern United States may be less resilient to drought-related climate change.

2.
Ecol Appl ; 28(7): 1773-1781, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29786900

RESUMO

Drought stress is an important consideration for wildlife in arid and semiarid regions under climate change. Drought can impact plant and animal populations directly, through effects on their physiology, as well as indirectly through effects on vegetation productivity and resource availability, and by creating conditions conducive to secondary disturbance, such as wildfire. We implemented a novel approach to understanding community-level demographic responses of birds and their habitats to these stressors in the context of climate change at 14 study sites in the Four Corners region of the southwestern United States. A large wildfire affecting three of the sites provided a natural experiment for also examining fire effects on vegetation and the bird community. We assessed (1) trends in drought and end-of-century (2071-2100) predicted average drought conditions under mid-range and high greenhouse gas concentration trajectory scenarios; (2) effects of drought and fire on habitat (vegetation greenness); and (3) effects of drought and fire on community-level avian productivity and adult apparent survival rates. Drought has increased and is expected to increase further at our study sites under climate change. Under spring drought conditions, vegetation greenness and avian productivity declined, while summer drought appeared to negatively affect adult apparent survival rates. Response to fire was mixed; in the year of the fire, avian productivity declined, but was higher than normal for several years post-fire. Our results highlight important links between environmental stressors and avian vital rates that will likely affect population trajectories in this region under climate change. We suggest that the use and continued development of community-level demographic models will provide useful tool for leveraging sparse species-level data to provide multi-species inferences and inform conservation.


Assuntos
Aves/fisiologia , Mudança Climática , Secas , Ecossistema , Incêndios , Animais , Demografia , Dinâmica Populacional , Sudoeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA