Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anim Cogn ; 25(5): 1109-1131, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018473

RESUMO

Dolphins gain information through echolocation, a publicly accessible sensory system in which dolphins produce clicks and process returning echoes, thereby both investigating and contributing to auditory scenes. How their knowledge of these scenes contributes to their echoic information-seeking is unclear. Here, we investigate their top-down cognitive processes in an echoic matching-to-sample task in which targets and auditory scenes vary in their decipherability and shift from being completely unfamiliar to familiar. A blind-folded adult male dolphin investigated a target sample positioned in front of a hydrophone to allow recording of clicks, a measure of information-seeking and effort; the dolphin received fish for choosing an object identical to the sample from 3 alternatives. We presented 20 three-object sets, unfamiliar in the first five 18-trial sessions with each set. Performance accuracy and click counts varied widely across sets. Click counts of the four lowest-performance-accuracy/low-discriminability sets (X = 41%) and the four highest-performance-accuracy/high-discriminability sets (X = 91%) were similar at the first sessions' starts and then decreased for both kinds of scenes, although the decrease was substantially greater for low-discriminability sets. In four challenging-but-doable sets, number of clicks remained relatively steady across the 5 sessions. Reduced echoic effort with low-discriminability sets was not due to overall motivation: the differential relationship between click number and object-set discriminability was maintained when difficult and easy trials were interleaved and when objects from originally difficult scenes were grouped with more discriminable objects. These data suggest that dolphins calibrate their echoic information-seeking effort based on their knowledge and expectations of auditory scenes.


Assuntos
Golfinho Nariz-de-Garrafa , Golfinhos , Ecolocação , Masculino , Animais , Comportamento de Busca de Informação
2.
J Exp Biol ; 220(Pt 6): 1135-1145, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298467

RESUMO

Exponential increases in hydrodynamic drag and physical exertion occur when swimmers move quickly through water, and underlie the preference for relatively slow routine speeds by marine mammals regardless of body size. Because of this and the need to balance limited oxygen stores when submerged, flight (escape) responses may be especially challenging for this group. To examine this, we used open-flow respirometry to measure the energetic cost of producing a swimming stroke during different levels of exercise in bottlenose dolphins (Tursiops truncatus). These data were then used to model the energetic cost of high-speed escape responses by other odontocetes ranging in mass from 42 to 2738 kg. The total cost per stroke during routine swimming by dolphins, 3.31±0.20 J kg-1 stroke-1, was doubled during maximal aerobic performance. A comparative analysis of locomotor costs (LC; in J kg-1 stroke-1), representing the cost of moving the flukes, revealed that LC during routine swimming increased with body mass (M) for odontocetes according to LC=1.46±0.0005M; a separate relationship described LC during high-speed stroking. Using these relationships, we found that continuous stroking coupled with reduced glide time in response to oceanic noise resulted in a 30.5% increase in metabolic rate in the beaked whale, a deep-diving odontocete considered especially sensitive to disturbance. By integrating energetics with swimming behavior and dive characteristics, this study demonstrates the physiological consequences of oceanic noise on diving mammals, and provides a powerful tool for predicting the biological significance of escape responses by cetaceans facing anthropogenic disturbances.


Assuntos
Golfinho Nariz-de-Garrafa/fisiologia , Mergulho , Metabolismo Energético , Natação , Orca/fisiologia , Animais , Feminino , Masculino , Oxigênio/metabolismo , Consumo de Oxigênio , Condicionamento Físico Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA