Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Plant Sci ; 12: 688214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249057

RESUMO

Olea europaea 'Galega vulgar' variety is a blend of West and Central Mediterranean germplasm with cultivated-wild admixture characteristics. 'Galega vulgar' is known for its high rusticity and superior-quality olive oil, being the main Portuguese variety with high impact for bioeconomy. Nevertheless, it has been replaced by higher-yielding and more adapted to intensive production foreign varieties. To clarify the potential ancestral origin, genetic diversity evolution, and existing genetic relationships within the national heritage of 'Galega vulgar', 595 trees, belonging to ancient and centenary age groups and prospected among ten traditional production regions, were characterized using 14 SSR markers after variety validation by endocarp measurements. Ninety-five distinguishable genets were identified, revealing the presence of a reasonable amount of intra-genetic and morphological variability. A minimum spanning tree, depicting the complete genealogy of all identified genets, represented the 'Galega vulgar' intra-varietal diversity, with 94% of the trees showing only a two-allele difference from the most frequent genet (C001). Strong correlations between the number of differentiating alleles from C001, the clonal size, and their net divergence suggested an ancestral monoclonal origin of the 'Galega vulgar', with the most frequent genet identified as the most likely origin of all the genets and phenotypic diversification occurring through somatic mutations. Genetic erosion was detected through the loss of some allele combinations across time. This work highlights the need to recover the lost diversity in this traditional olive variety by including ancient private genets (associated with potential adaptation traits) in future breeding programs and investing in the protection of these valuable resources in situ by safeguarding the defined region of origin and dispersion of 'Galega vulgar'. Furthermore, this approach proved useful on a highly diverse olive variety and thus applicable to other diverse varieties due either to their intermediate nature between different gene pools or to the presence of a mixture of cultivated and wild traits (as is the case of 'Galega vulgar').

2.
Metabolites ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070718

RESUMO

In viticulture, grafting is used to propagate Phylloxera-susceptible European grapevines, thereby using resistant American rootstocks. Although scion-rootstock reciprocal signaling is essential for the formation of a proper vascular union and for coordinated growth, our knowledge of graft partner interactions is very limited. In order to elucidate the scale and the content of scion-rootstock metabolic interactions, we profiled the metabolome of eleven graft combination in leaves, stems, and phloem exudate from both above and below the graft union 5-6 months after grafting. We compared the metabolome of scions vs. rootstocks of homografts vs. heterografts and investigated the reciprocal effect of the rootstock on the scion metabolome. This approach revealed that (1) grafting has a minor impact on the metabolome of grafted grapevines when tissues and genotypes were compared, (2) heterografting affects rootstocks more than scions, (3) the presence of a heterologous grafting partner increases defense-related compounds in both scion and rootstocks in shorter and longer distances from the graft, and (4) leaves were revealed as the best tissue to search for grafting-related metabolic markers. These results will provide a valuable metabolomics resource for scion-rootstock interaction studies and will facilitate future efforts on the identification of metabolic markers for important agronomic traits in grafted grapevines.

3.
Hortic Res ; 8(1): 18, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33436559

RESUMO

The knowledge on post-transcriptional regulation mechanisms implicated in seed development (SD) is still limited, particularly in one of the most consumed grain legumes, Phaseolus vulgaris L. We explore for the first time the miRNA expression dynamics in P. vulgaris developing seeds. Seventy-two known and 39 new miRNAs were found expressed in P. vulgaris developing seeds. Most of the miRNAs identified were more abundant at 10 and 40 days after anthesis, suggesting that late embryogenesis/early filling and desiccation were SD stages in which miRNA action is more pronounced. Degradome analysis and target prediction identified targets for 77 expressed miRNAs. While several known miRNAs were predicted to target HD-ZIP, ARF, SPL, and NF-Y transcription factors families, most of the predicted targets for new miRNAs encode for functional proteins. MiRNAs-targets expression profiles evidenced that these miRNAs could tune distinct seed developmental stages. MiRNAs more accumulated at early SD stages were implicated in regulating the end of embryogenesis, postponing the seed maturation program, storage compound synthesis and allocation. MiRNAs more accumulated at late SD stages could be implicated in seed quiescence, desiccation tolerance, and longevity with still uncovered roles in germination. The miRNAs herein described represent novel P. vulgaris resources with potential application in future biotechnological approaches to modulate the expression of genes implicated in legume seed traits with impact in horticultural production systems.

4.
Front Plant Sci ; 11: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194583

RESUMO

The domesticated grapevine spread along the Mediterranean basin from the primary Near East domestication area, where the greatest genetic diversity is found in its ancestor, the wild vine populations. Portuguese wild populations are on the southwestern fringe of the distribution of the Vitis vinifera L. ssp. sylvestris (C.C. Gmel.) Hegi in Europe. During the last Glacial Period they became isolated from the previous continuum that had been the territory of wild vine populations. Archaeological remains of domesticated vinifera grapevines in Portugal date back from 795 Before Common Era (BCE) in the lower Tagus river basin. In this work, 258 Portuguese vinifera varieties and sylvestris plants were characterized using 261 single nucleotide polymorphism (SNP) markers. The study of the genetic diversity of this local germplasm, its population structure and kinship, all framed in their historical and geographical backgrounds, revealed a complex network of first-degree relationships, where only Iberian varieties are involved. Some Iberian genotypes, like Alfrocheiro (Bruñal, in Spain), Sarigo (Cayetana Blanca), Mourisco Branco (Hebén), Amaral (Caiño Bravo), and Marufo (Moravia Dulce) are ancestors of a considerable fraction of all the autochthonous analyzed varieties. A part of the diversity developed was mostly local in some cases as shown by the closeness of several varieties (Vinhos Verdes) to the wild cluster in different analyses. Besides, several evidences of introgression of domesticated germplasm into wild vines was found, substantiating the high risk of genetic contamination of the sylvestris subspecies. All these findings together to the known matching between the wild maternal lineage of the Iberian Peninsula and an important number of Portuguese grapevine varieties (chlorotype A), point out that some of these varieties derive, directly or indirectly, from originally local wild populations, supporting the possible occurrence of secondary events of local domestication, or, at least, of an introgression process of wild into cultivated grapevines.

5.
J Plant Physiol ; 241: 153034, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493718

RESUMO

Legumes have the capacity to fix nitrogen in symbiosis with soil bacteria known as rhizobia by the formation of root nodules. However, nitrogen fixation is highly sensitive to soil salinity with a concomitant reduction of the plant yield and soil fertilization. Polycationic aliphatic amines known as polyamines (PAs) have been shown to be involved in the response to a variety of stresses in plants including soil salinity. Therefore, the generation of transgenic plants overexpressing genes involved in PA biosynthesis have been proposed as a promising tool to improve salt stress tolerance in plants. In this work we tested whether the modulation of PAs in transgenic Medicago truncatula plants was advantageous for the symbiotic interaction with Sinorhizobium meliloti under salt stress conditions, when compared to wild type plants. Consequently, we characterized the symbiotic response to salt stress of the homozygous M. truncatula plant line L-108, constitutively expressing the oat adc gene, coding for the PA biosynthetic enzyme arginine decarboxylase, involved in PAs biosynthesis. In a nodulation kinetic assay, nodule number incremented in L-108 plants under salt stress. In addition, these plants at vegetative stage showed higher nitrogenase and nodule biomass and, under salt stress, accumulated proline (Pro) and spermine (Spm) in nodules, while in wt plants, the accumulation of glutamic acid (Glu), γ-amino butyric acid (GABA) and 1-aminocyclopropane carboxylic acid (ACC) (the ethylene (ET) precursor) were the metabolites involved in the salt stress response. Therefore, overexpression of oat adc gene favours the symbiotic interaction between plants of M. truncatula L-108 and S. meliloti under salt stress and the accumulation of Pro and Spm, seems to be the molecules involved in salt stress tolerance.


Assuntos
Carboxiliases/metabolismo , Genes de Plantas/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Estresse Salino/fisiologia , Sinorhizobium meliloti/fisiologia , Espermina/metabolismo , Simbiose , Aminoácidos/metabolismo , Carboxiliases/genética , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Interações entre Hospedeiro e Microrganismos/genética , Peróxido de Hidrogênio/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia , Simbiose/fisiologia , Transcriptoma
6.
Front Plant Sci ; 10: 1590, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921241

RESUMO

Trehalose, a non-reducing disaccharide with multiple functions, among which source of energy and carbon, stress protectant, and signaling molecule, has been mainly studied in relation to plant development and response to stress. The trehalose pathway is conserved among different organisms and is composed of three enzymes: trehalose-6-phosphate synthase (TPS), which converts uridine diphosphate (UDP)-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P), trehalose-6-phosphatase (TPP), which dephosphorylates T6P to produce trehalose, and trehalase (TRE), responsible for trehalose catabolism. In plants, the trehalose pathway has been mostly studied in resurrection plants and the model plant Arabidopsis thaliana, where 11 AtTPS, 10 AtTPP, and 1 AtTRE genes are present. Here, we aim to investigate the involvement of the trehalose pathway in the early stages of seed germination (specifically, seed imbibition) using the model legume Medicago truncatula as a working system. Since not all the genes belonging to the trehalose pathway had been identified in M. truncatula, we first conducted an in silico analysis using the orthologous gene sequences from A. thaliana. Nine MtTPSs, eight MtTPPs, and a single MtTRE gene were hereby identified. Subsequently, the expression profiles of all the genes (together with the sucrose master-regulator SnRK1) were investigated during seed imbibition with water or stress agents (polyethylene glycol and sodium chloride). The reported data show a temporal distribution and preferential expression of specific TPS and TPP isoforms during seed imbibition with water. Moreover, it was possible to distinguish a small set of genes (e.g., MtTPS1, MtTPS7, MtTPS10, MtTPPA, MtTPPI, MtTRE) having a potential impact as precocious hallmarks of the seed response to stress. When the trehalose levels were measured by high-performance liquid chromatography, a significant decrease was observed during seed imbibition, suggesting that trehalose may act as an energy source rather than osmoprotectant. This is the first report investigating the expression profiles of genes belonging to the trehalose pathway during seed imbibition, thus ascertaining their involvement in the pre-germinative metabolism and their potential as tools to improve seed germination efficiency.

7.
Genes (Basel) ; 9(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241355

RESUMO

The maintenance of genome integrity is crucial in seeds, due to the constant challenge of several endogenous and exogenous factors. The knowledge concerning DNA damage response and chromatin remodeling during seed development is still scarce, especially in Phaseolus vulgaris L. A transcriptomic profiling of the expression of genes related to DNA damage response/chromatin remodeling mechanisms was performed in P. vulgaris seeds at four distinct developmental stages, spanning from late embryogenesis to seed desiccation. Of the 14,001 expressed genes identified using massive analysis of cDNA ends, 301 belong to the DNA MapMan category. In late embryogenesis, a high expression of genes related to DNA damage sensing and repair suggests there is a tight control of DNA integrity. At the end of filling and the onset of seed dehydration, the upregulation of genes implicated in sensing of DNA double-strand breaks suggests that genome integrity is challenged. The expression of chromatin remodelers seems to imply a concomitant action of chromatin remodeling with DNA repair machinery, maintaining genome stability. The expression of genes related to nucleotide excision repair and chromatin structure is evidenced during the desiccation stage. An overview of the genes involved in DNA damage response and chromatin remodeling during P. vulgaris seed development is presented, providing insights into the mechanisms used by developing seeds to cope with DNA damage.

8.
Front Plant Sci ; 8: 515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443110

RESUMO

The most dangerous pathogen affecting the production of chestnuts is Phytophthora cinnamomi a hemibiotrophic that causes root rot, also known as ink disease. Little information has been acquired in chestnut on the molecular defense strategies against this pathogen. The expression of eight candidate genes potentially involved in the defense to P. cinnamomi was quantified by digital PCR in Castanea genotypes showing different susceptibility to the pathogen. Seven of the eight candidate genes displayed differentially expressed levels depending on genotype and time-point after inoculation. Cast_Gnk2-like revealed to be the most expressed gene across all experiments and the one that best discriminates between susceptible and resistant genotypes. Our data suggest that the pre-formed defenses are crucial for the resistance of C. crenata to P. cinnamomi. A lower and delayed expression of the eight studied genes was found in the susceptible Castanea sativa, which may be related with the establishment and spread of the disease in this species. A working model integrating the obtained results is presented.

9.
J Chromatogr A ; 1477: 30-38, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27908495

RESUMO

Trehalose-6-phosphate (T6P) is an important signaling metabolite involved in plant growth control that inhibits the sucrose nonfermenting-1-related protein kinase 1 (SnRK1), a key regulator of energy and carbon metabolism in plants. The quantification of T6P in plant tissues is fundamental to improve our understanding of sugar signaling and the links between plant growth and development in response to stress conditions. However, the almost undetectable levels of T6P together with the complex plant matrix and the presence of T6P isomers such as sucrose-6-phosphate (S6P), makes the detection of this metabolite challenging. This work describes the development and validation of a hydrophilic interaction chromatography (HILIC) method for the on-line coupling with negative ion electrospray (ESI) triple quadrupole tandem mass spectrometry (MS/MS) in the highly sensitive and selective multiple reaction monitoring (MRM) mode for the target analysis of metabolic intermediates of the biosynthesis of trehalose, including glucose-6-phosphate (G6P), uridine 5-diphospho-glucose (UDPG), T6P (and its isomer S6P). Enhanced signal in the MRM mode and improved chromatographic separation for each compound were obtained using piperidine and methylphosphonic acid as additives in the HILIC mobile phase. The optimized HILIC-ESI-QqQ-MS/MS method increases the range of sensitive analytical methodologies for the quantification of key low-abundant metabolites, and was applied to quantify the fluctuations of S6P, T6P and G6P in Medicago truncatula plants in response to environmental stress. The levels of S6P, T6P, and G6P in M. truncatula plant tissues (roots and leaves) exposed to a water deficit and recovery treatment, ranged from 30 to 150pmolg-1 FW, 16-120pmolg-1 FW, and 330-1690pmolg-1 FW, respectively.


Assuntos
Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Medicago truncatula/metabolismo , Metaboloma , Fosfatos Açúcares/análise , Espectrometria de Massas em Tandem/métodos , Trealose/análogos & derivados , Vias Biossintéticas , Limite de Detecção , Folhas de Planta/metabolismo , Padrões de Referência , Soluções , Sacarose/análogos & derivados , Sacarose/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análise
10.
New Phytol ; 206(4): 1297-313, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25684249

RESUMO

Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification. We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes. The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate O-hydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5-hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox. The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop world-wide, provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.


Assuntos
Eucalyptus/genética , Genoma de Planta , Lignina/metabolismo , Simulação por Computador , Meio Ambiente , Eucalyptus/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hidroxilação , Metilação , Fenilalanina Amônia-Liase/genética , Filogenia , Propanóis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
11.
ACS Appl Mater Interfaces ; 6(12): 9100-10, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24853082

RESUMO

For several years now, nanoscaled materials have been implemented in biotechnological applications related to animal (in particular human) cells and related pathologies. However, the use of nanomaterials in plant biology is far less widespread, although their application in this field could lead to the future development of plant biotechnology applications. For any practical use, it is crucial to elucidate the relationship between the nanomaterials and the target cells. In this work we have evaluated the behavior of two types of nanomaterials, quantum dots and superparamagnetic nanoparticles, on Fusarium oxysporum, a fungal species that infects an enormous range of crops causing important economic losses and is also an opportunistic human pathogen. Our results indicated that both nanomaterials rapidly interacted with the fungal hypha labeling the presence of the pathogenic fungus, although they showed differential behavior with respect to internalization. Thus, whereas magnetic nanoparticles appeared to be on the cell surface, quantum dots were significantly taken up by the fungal hyphae showing their potential for the development of novel control approaches of F. oxysporum and related pathogenic fungi following appropriate functionalization. In addition, the fungal germination and growth, accumulation of ROS, indicative of cell stress, and fungal viability have been evaluated at different nanomaterial concentrations showing the low toxicity of both types of nanomaterials to the fungus. This work represents the first study on the behavior of quantum dots and superparamagnetic particles on fungal cells, and constitutes the first and essential step to address the feasibility of new nanotechnology-based systems for early detection and eventual control of pathogenic fungi.


Assuntos
Fusarium/isolamento & purificação , Nanopartículas/química , Plantas/microbiologia , Pontos Quânticos , Animais , Fusarium/patogenicidade , Humanos , Nanotecnologia
12.
BMC Biotechnol ; 13: 111, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359290

RESUMO

BACKGROUND: Nanoparticles appear to be promising devices for application in the agriculture and food industries, but information regarding the response of plants to contact with nano-devices is scarce. Toxic effects may be imposed depending on the type and concentration of nanoparticle as well as time of exposure. A number of mechanisms may underlie the ability of nanoparticles to cause genotoxicity, besides the activation of ROS scavenging mechanisms. In a previous study, we showed that plant cells accumulate 3-Mercaptopropanoic acid-CdSe/ZnS quantum dots (MPA-CdSe/ZnS QD) in their cytosol and nucleus and increased production of ROS in a dose dependent manner when exposed to QD and that a concentration of 10 nM should be cyto-compatible. RESULTS: When Medicago sativa cells were exposed to 10, 50 and 100 nM MPA-CdSe/ZnS QD a correspondent increase in the activity of Superoxide dismutase, Catalase and Glutathione reductase was registered. Different versions of the COMET assay were used to assess the genotoxicity of MPA-CdSe/ZnS QD. The number of DNA single and double strand breaks increased with increasing concentrations of MPA-CdSe/ZnS QD. At the highest concentrations, tested purine bases were more oxidized than the pyrimidine ones. The transcription of the DNA repair enzymes Formamidopyrimidine DNA glycosylase, Tyrosyl-DNA phosphodiesterase I and DNA Topoisomerase I was up-regulated in the presence of increasing concentrations of MPA-CdSe/ZnS QD. CONCLUSIONS: Concentrations as low as 10 nM MPA-CdSe/ZnS Quantum Dots are cytotoxic and genotoxic to plant cells, although not lethal. This sets a limit for the concentrations to be used when practical applications using nanodevices of this type on plants are being considered. This work describes for the first time the genotoxic effect of Quantum Dots in plant cells and demonstrates that both the DNA repair genes (Tdp1ß, Top1ß and Fpg) and the ROS scavenging mechanisms are activated when MPA-CdSe/ZnS QD contact M. sativa cells.


Assuntos
Antioxidantes/metabolismo , Reparo do DNA , Medicago sativa/citologia , Células Vegetais/efeitos dos fármacos , Pontos Quânticos , Catalase/metabolismo , Células Cultivadas , DNA Topoisomerases Tipo I/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Sequestradores de Radicais Livres/metabolismo , Glutationa Redutase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
13.
Plant Signal Behav ; 8(12): e26626, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24084646

RESUMO

Carbon signaling can override carbon supply in the regulation of growth. At least some of this regulation is imparted by the sugar signal trehalose 6-phosphate (T6P) through the protein kinase, SnRK1. This signaling pathway regulates biosynthetic processes involved in growth under optimal growing conditions. Recently, using a seedling system we showed that under sub-optimal conditions, such as cold, carbon signaling by T6P/ SnRK1 enables recovery of growth following relief of the stress. The T6P/ SnRK1 mechanism thus could be selected as a means of improving low temperature tolerance. High-throughput automated Fv/Fm measurements provide a potential means to screen for T6P/ SnRK1, and here we confirm through measurements of Fv/Fm in rosettes that T6P promotes low temperature tolerance and recovery during cold to warm transfer. Further, to better understand the coordination between sugars, trehalose pathway, and temperature-dependent growth, we examine the interrelationship between sugars, trehalose phosphate synthase (TPS), and trehalose phosphate phosphatase (TPP) gene expression and T6P content in seedlings. Sucrose, particularly when fed exogenously, correlated well with TPS1 and TPPB gene expression, suggesting that these enzymes are involved in maintaining carbon flux through the pathway in relation to sucrose supply. However, when sucrose accumulated to higher levels under low temperature and low N, TPS1 and TPPB expression were less directly related to sucrose; other factors may also contribute to regulation of TPS1 and TPPB expression under these conditions. TPPA expression was not related to sucrose content and all genes were not well correlated with endogenous glucose. Our work has implications for understanding acclimation to sink-limited growth conditions such as low temperature and for screening cold-tolerant genotypes with altered T6P/ SnRK1 signaling.


Assuntos
Temperatura Baixa , Redes e Vias Metabólicas/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Sacarose/farmacologia , Trealose/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Desenvolvimento Vegetal/genética , Fosfatos Açúcares , Trealose/análogos & derivados
14.
Plant Physiol ; 162(3): 1720-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23735508

RESUMO

Trehalose 6-P (T6P) is a sugar signal in plants that inhibits SNF1-related protein kinase, SnRK1, thereby altering gene expression and promoting growth processes. This provides a model for the regulation of growth by sugar. However, it is not known how this model operates under sink-limited conditions when tissue sugar content is uncoupled from growth. To test the physiological importance of this model, T6P, SnRK1 activities, sugars, gene expression, and growth were measured in Arabidopsis (Arabidopsis thaliana) seedlings after transfer to cold or zero nitrogen compared with sugar feeding under optimal conditions. Maximum in vitro activities of SnRK1 changed little, but T6P accumulated up to 55-fold, correlating with tissue Suc content in all treatments. SnRK1-induced and -repressed marker gene expression strongly related to T6P above and below a threshold of 0.3 to 0.5 nmol T6P g(-1) fresh weight close to the dissociation constant (4 µm) of the T6P/ SnRK1 complex. This occurred irrespective of the growth response to Suc. This implies that T6P is not a growth signal per se, but through SnRK1, T6P primes gene expression for growth in response to Suc accumulation under sink-limited conditions. To test this hypothesis, plants with genetically decreased T6P content and SnRK1 overexpression were transferred from cold to warm to analyze the role of T6P/SnRK1 in relief of growth restriction. Compared with the wild type, these plants were impaired in immediate growth recovery. It is concluded that the T6P/SnRK1 signaling pathway responds to Suc induced by sink restriction that enables growth recovery following relief of limitations such as low temperature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , Carboidratos , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Nitrogênio , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Plântula , Sacarose/metabolismo , Sacarose/farmacologia , Trealose/metabolismo
15.
Plant Physiol Biochem ; 63: 89-98, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23257075

RESUMO

SnRK1 of the SNF1/AMPK group of protein kinases is an important regulatory protein kinase in plants. SnRK1 was recently shown as a target of the sugar signal, trehalose 6-phosphate (T6P). Glucose 6-phosphate (G6P) can also inhibit SnRK1 and given the similarity in structure to T6P, we sought to establish if each could impart distinct inhibition of SnRK1. Other central metabolites, glucose 1-phosphate (G1P), fructose 6-phosphate and UDP-glucose were also tested, and additionally ribose 5-phosphate (R5P), recently reported to inhibit SnRK1 strongly in wheat grain tissue. For the metabolites that inhibited SnRK1, kinetic models show that T6P, G1P and G6P each provide distinct regulation (50% inhibition of SnRK1 at 5.4 µM, 480 µM, >1 mM, respectively). Strikingly, G1P in combination with T6P inhibited SnRK1 synergistically. R5P, in contrast to the other inhibitors, inhibited SnRK1 in green tissues only. We show that this is due to consumption of ATP in the assay mediated by phosphoribulokinase during conversion of R5P to ribulose-1,5-bisphosphate. The accompanying loss of ATP limits the activity of SnRK1 giving rise to an apparent inhibition of SnRK1. Inhibition of SnRK1 by R5P in wheat grain preparations can be explained by the presence of green pericarp tissue; this exposes an important caveat in the assessment of potential protein kinase inhibitors. Data provide further insight into the regulation of SnRK1 by metabolites.


Assuntos
Glucofosfatos/farmacologia , Proteínas de Plantas/metabolismo , Fosfatos Açúcares/farmacologia , Trealose/análogos & derivados , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ribulosefosfatos/metabolismo , Trealose/farmacologia , Triticum/efeitos dos fármacos , Triticum/metabolismo
16.
PLoS One ; 7(9): e46021, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029369

RESUMO

Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA) concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin) descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B) were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B), UFGT, MRP, DFR, LDOX, CHI and GST). Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B), MYC(A), UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A)). Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B). SNPs within LDOX interacted with MYB11 and MYC(B), while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.


Assuntos
Antocianinas/análise , Antocianinas/genética , Vitis/química , Vitis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Modelos Genéticos , Modelos Estatísticos , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Vitis/enzimologia
17.
Methods Mol Biol ; 906: 435-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791455

RESUMO

Like most of the new technologies designed to interact with biological systems, the applications of -nanomaterials needs a proper assessment for their potential impacts. It is only through addressing the issues raised by toxicological studies that nanotechnology will be able to acquire its full potential. Here, we describe the detailed protocols to study the responses of plant cells to their exposure to nanoparticles, including viability, oxidative stress detection, and reactive oxygen species enzymatic detoxification, as well as particle uptake.


Assuntos
Ácido 3-Mercaptopropiônico/química , Medicago sativa/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Pontos Quânticos , Testes de Toxicidade/métodos , Catalase/metabolismo , Técnicas de Cultura de Células , Sobrevivência Celular , Medicago sativa/enzimologia , Medicago sativa/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
18.
Physiol Plant ; 146(2): 236-49, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22497501

RESUMO

Medicago truncatula is a model legume, whose genome is currently being sequenced. Somatic embryogenesis (SE) is a genotype-dependent character and not yet fully understood. In this study, a proteomic approach was used to compare the induction and expression phases of SE of both the highly embryogenic line M9-10a of M. truncatula cv. Jemalong and its non-embryogenic predecessor line, M9. The statistical analysis between the lines revealed 136 proteins with significant differential expression (P < 0.05). Of these, 5 had a presence/absence pattern in M9 vs M9-10a and 22 showed an at least twofold difference in terms of spot volume, were considered of particular relevance to the SE process and therefore chosen for identification. Spots were excised in gel digested with trypsin and proteins were identified using matrix-assisted laser desorption ionization-time of flight/time of flight. Identified proteins indicated a higher adaptability of the embryogenic line toward the stress imposed by the inducing culture conditions. Also, some proteins were shown to have a dual pattern of expression: peroxidase, pyrophosphatase and aspartate aminotransferase. These proteins showed higher expression during the induction phases of the M9 line, whereas in the embryogenic line had higher expression at stages coinciding with embryo formation.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Medicago truncatula/embriologia , Reguladores de Crescimento de Plantas/análise , Proteínas de Plantas/análise , Sementes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Variação Genética , Genótipo , Medicago truncatula/química , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteômica , Sementes/crescimento & desenvolvimento , Especificidade da Espécie
19.
Trends Biotechnol ; 29(12): 595-600, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21794941

RESUMO

Molecular hydrogen (H(2)) obtained from biological sources provides an alternative to bulk chemical processes that is moving towards large-scale, economical generation of clean fuel for automotive engines. This opinion article examines recent improvements in H(2) production by wild and mutant strains of Chlamydomonas reinhardtii - the green microalga currently considered the best eukaryotic H(2) producer. Here, we review various aspects of genetic and metabolic engineering of C. reinhardtii, as well as of process engineering. Additionally, we lay out possible scenarios that would lead to more efficient research approaches in the near future, as part of a consistent strategy for sustainable biohydrogen supply.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Hidrogênio/metabolismo , Chlamydomonas reinhardtii/genética , Engenharia Metabólica , Redes e Vias Metabólicas , Mutação
20.
J Plant Physiol ; 168(15): 1729-34, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21676491

RESUMO

Based on projections that climate changes are will intensify in the near future, it is important to understand how plants respond to climate. Consequently, we have been studying the effect of contrasting temperatures on leaf metabolism of Quercus suber, an important Mediterranean oak. Potted plants were grown under controlled conditions for 53 days at 28°C or 10°C. The accumulation of major soluble metabolites was analyzed by NMR. The relative levels of transcripts of genes encoding key enzymes of the shikimate and phenylpropanoid pathway (CS, PAL, CAD and ChS) were examined by means of quantitative, real-time RT-PCR. At 10°C, in the pre-existing leaves, the concentrations of sucrose, quercitol and catechin were higher, as were PAL and ChS transcripts. At 28°C, however, it was the concentration of quinic acid that was higher, as were the concentrations of CS and CAD transcripts. We conclude that contrasting temperatures greatly influence Q. suber metabolism and that a deeper analysis of the effects of more extreme temperatures is needed to understand the possible effects of temperature changes on Q. suber metabolism and physiology.


Assuntos
Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Quercus/fisiologia , Estresse Fisiológico , Temperatura , Aciltransferases/genética , Oxirredutases do Álcool/genética , Sequência de Bases , Catequina/análise , Catequina/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/análise , Glucose/metabolismo , Inositol/análogos & derivados , Inositol/análise , Inositol/metabolismo , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Fenóis/metabolismo , Fenilalanina Amônia-Liase/genética , Fósforo-Oxigênio Liases/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Quercus/genética , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Ácido Quínico/análise , Ácido Quínico/metabolismo , RNA de Plantas/genética , Sacarose/análise , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA