RESUMO
BACKGROUND: Neurofibromatosis type 2 (NF2) is a rare autosomal dominant syndrome with a predisposition to the development of central nervous system tumors, ophthalmic manifestations, and dermatological lesions. The latter are present in 70-95% of patients and can precede the evolution of other tumors. However, they are not included in the diagnostic criteria and are frequently undervalued during follow-up. METHODS: An observational cross-sectional study characterizing cutaneous lesions in a cohort of NF2 patients was carried out. Dermatological examinations were performed, and lesions were classified into neural cutaneous tumors (superficial, SNCT, and deep, DNCT), hyperpigmented patches (HyperP), and hypopigmented patches (HypoP). The Dermatology Life Quality Index (DLQI) and EQ-5D questionnaires were applied to evaluate the impact on quality of life. RESULTS: Nineteen patients with a mean age of 36 years were included. Sixteen (84%) patients had cutaneous lesions, mostly developed 10 or more years before the diagnosis. SNCT, DNCT, and HyperP showed similar frequencies (58%). HypoP were observed in only one patient. HyperP developed, on average, earlier than NCT (9.6 vs. 16.5 SNCT, 17.0 DNCT; years). The excised lesions had different histological patterns, including neurofibromas, schwannomas, and a hybrid tumor. Most patients reported a low impact of cutaneous manifestations on the quality of life (DLQI 0 or 1). CONCLUSIONS: Cutaneous lesions are frequent in NF2 and may precede the diagnosis by several years. Their identification is important to establish the diagnosis earlier and potentially reduce morbidity and mortality.
RESUMO
Large amounts of aluminum (Al) are found in wastewater from industrial bauxite mining, which is often responsible for the contamination of drinking water sources in urban and rural communities. Although this metal exhibits broad environmental distribution, its cardiac repercussions are poorly understood, making it difficult to establish diagnostic criteria in cases of Al intoxication. In the absence of clinical data, we used a preclinical model to investigate the impact of Al exposure on heart bioaccumulation, molecular oxidation, micromineral distribution, structural and ultrastructural remodeling of the cardiac tissue. Male Wistar rats were equally randomized into five groups: G1â¯=â¯distilled water; and G2 to G5â¯=â¯0.02, 0.1, 50, and 200â¯mg/kg aluminum solution, respectively. After 120 days, the hearts were collected and subjected to mineral microanalysis, immunoenzymatic detection of 8-OHdG, as well as bright field, polarizing, scanning and transmission electron microscopy to estimate the extent of the cardiac remodeling and cardiomyocytes ultrastructure. Long-term Al exposure induced dose-dependent bioaccumulation, micromineral imbalance, genomic DNA oxidation, structural and ultrastructural abnormalities of the cardiac tissue, resulting in extensive parenchymal loss, stromal expansion, diffuse inflammatory infiltrate, increased glycoconjugate and collagen deposition, subversion and collapse of the collagen network, reduced myocardial vascularization index, mitochondrial swelling, sarcomere disorganization, myofilament dissociation, and fragmentation in cardiomyocytes. Our findings indicated that the heart was sensitive to Al-mediated toxicity, especially in animals treated with the three highest doses of Al. In response to Al-induced loss of the parenchyma, heart stroma exhibited a reactive and compensatory expansion, which, in combination with the increased distribution of thick myofibrils and degenerated mitochondria in cardiomyocytes, provides morphological evidence that cardiac tissue adaptations are not enough to adjust the relationships between the parenchyma and stroma until a steady state is reached, resulting in continuous pathological remodeling potentially associated with Al-induced proinflammatory and pro-oxidant events.
Assuntos
Alumínio/toxicidade , Coração/efeitos dos fármacos , Testes de Toxicidade , Animais , DNA , Relação Dose-Resposta a Droga , Água Potável , Masculino , Minerais , Mineração , Miócitos Cardíacos , Ratos , Ratos WistarRESUMO
Desmodus rotundus is a vampire bat species that inhabits Latin America. Some basic aspects of this species' biology are still unknown, as the histophysiological characteristics of the male reproductive tract. Our study has focused on its epididymis, which is an important organ for performing a variety of functions, especially the sperm maturation and storage. The aim of this study was to identify principal, narrow, clear, and basal cells using cell-specific markers such as aquaporin 9 (AQP9), vacuolar H+-ATPase (V-ATPase), and cytokeratin 5 (KRT5). Principal cells were labeled by AQP9 from initial segment to cauda region in their stereocilia. They were shown with a columnar shape, whereas V-ATPase-rich cells were identified with a goblet-shaped body along the entire epididymis, including the initial segment, which were named as clear cells. Pencil-shaped V-ATPase-rich cells (narrow cells) were not detected in the initial segment of the bat epididymis, unlike in the rodent. Basal cells were labeled by KRT5 and were located at the basal portion of the epithelium forming a dense network. However, no basal cells with a luminal-reaching body extension were observed in the bat epididymis. In summary, epithelial cells were identified by their specific markers in the vampire bat epididymis. Principal and basal cells were labeled by AQP9 and KRT5, respectively. Narrow cells were not observed in the vampire bat epididymis, whereas clear cells were identified by V-ATPase labeling along the entire duct in a goblet-shaped body. In addition, no luminal-reaching basal cells were observed in the vampire bat epididymis.
Assuntos
Aquaporinas/metabolismo , Epididimo/metabolismo , Queratina-5/biossíntese , Queratina-5/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Aquaporinas/análise , Aquaporinas/biossíntese , Quirópteros , Epididimo/citologia , Imunofluorescência , Queratina-5/análise , Masculino , Microscopia Eletrônica de Transmissão , ATPases Vacuolares Próton-Translocadoras/análise , ATPases Vacuolares Próton-Translocadoras/biossínteseRESUMO
Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 µM); CAL2 (17 kDa, pHo 5.5, km 11 µM Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM l-Leucine-p-nitroanilide), α-glucosidase (90 kDa, pHo 5.0, km 5mM with p-nitrophenyl α-d-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans.