Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003534

RESUMO

Cachexia is a devastating pathology that worsens the quality of life and antineoplastic treatment outcomes of oncologic patients. Herein, we report that the secretome from murine colon carcinoma CT26 induces cachectic features in both murine and human adipocytes that are associated with metabolic alterations such as enhanced lactate production and decreased oxygen consumption. The use of oxamate, which inhibits lactate dehydrogenase activity, hinders the effects induced by CT26 secretome. Interestingly, the CT26 secretome elicits an increased level of lactate dehydrogenase and decreased expression of adiponectin. These modifications are driven by the STAT3 signalling cascade since the inhibition of STAT3 with WP1066 impedes the formation of the cachectic condition and the alteration of lactate dehydrogenase and adiponectin levels. Collectively, these findings show that STAT3 is responsible for the altered lactate dehydrogenase and adiponectin levels that, in turn, could participate in the worsening of this pathology and highlight a step forward in the comprehension of the mechanisms underlying the onset of the cachectic condition in adipocytes.


Assuntos
Adiponectina , Caquexia , Humanos , Camundongos , Animais , Adiponectina/metabolismo , Caquexia/metabolismo , Regulação para Baixo , Qualidade de Vida , Regulação para Cima , Adipócitos/metabolismo , L-Lactato Desidrogenase/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36791024

RESUMO

Cell contact guidance is widely employed to manipulate cell alignment and differentiation in vitro. The use of nano- or micro-patterned substrates allows efficient control of cell organization, thus opening up to biological models that cannot be reproduced spontaneously on standard culture dishes. In this paper, we explore the concept of cell contact guidance by Liquid Crystalline Networks (LCNs) presenting different surface topographies obtained by self-assembly of the monomeric mixture. The materials are prepared by photopolymerization of a low amount of diacrylate monomer dissolved in a liquid crystalline solvent, not participating in the reaction. The alignment of the liquid crystals, obtained before polymerization, determines the scaffold morphology, characterized by a nanometric structure. Such materials are able to drive the organization of different cell lines, e.g., fibroblasts and myoblasts, allowing for the alignment of single cells or high-density cell cultures. These results demonstrate the capabilities of rough surfaces prepared from the spontaneous assembly of liquid crystals to control biological models without the need of lithographic patterning or complex fabrication procedures. Interestingly, during myoblast differentiation, also myotube structuring in linear arrays is observed along the LCN fiber orientation. The implementation of this technology will open up to the formation of muscular tissue with well-aligned fibers in vitro mimicking the structure of native tissues.

3.
Sci Rep ; 12(1): 18526, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323868

RESUMO

In elite athlete several metabolic changes occur during regular training. These modifications are associated with changes in blood metabolic profile and can lead to adaptive mechanisms aimed at establish a new dynamic equilibrium, which guarantees better performance. The goal of this study was to characterize the plasma metabolic profile and redox homeostasis, in athletes practicing two different team sports such as soccer and basketball in order to identify potential metabolic pathways underlying the differences in training programs. A cohort of 30 male, 20 professional players (10 soccer and 10 basketballs) and 10 sedentary males as control were enrolled in the study. Plasma redox balance, metabolites and adiponectin were determined. The results show low levels of oxidative species (25.5%), with both high antioxidant capacity (17.6%) and adiponectin level (64.4%) in plasma from basketball players, in comparison to soccer players. Metabolic analysis indicates in basketball players a significant high plasma level of amino acids Valine and Ornithine both involved in redox homeostasis and anti-inflammatory metabolism.


Assuntos
Basquetebol , Futebol , Humanos , Masculino , Adiponectina , Atletas , Estresse Oxidativo
4.
FASEB J ; 36(11): e22598, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36305891

RESUMO

Cachexia is a systemic disease associated with several pathologies, including cancer, that leads to excessive weight loss due to enhanced protein degradation. Previously, we showed that cachectic features in myotubes are provoked by a metabolic shift toward lactic fermentation. Our previous results led us to hyphotesise that increasing pyruvate concentration could impede the metabolic modifications responsible for induction of cachexia in myotubes. Here, we demonstrated that the addition of sodium pyruvate in conditioned media from CT26 colon cancer cells (CM CT26) prevents the onset of either phenotypic and metabolic cachectic features. Myotubes treated with CM CT26 containing sodium pyruvate show a phenotype similar to the healthy counterpart and display lactate production, oxygen consumption, and pyruvate dehydrogenase activity as control myotubes. The use of the Mitochondrial Pyruvate Carrier inhibitor UK5099, highlights the importance of mitochondrial pyruvate amount in the prevention of cachexia. Indeed, UK5099-treated myotubes show cachectic features as those observed in myotubes treated with CM CT26. Finally, we found that sodium pyruvate is able to decrease STAT3 phosphorylation level, a signaling pathway involved in the induction of cachexia in myotubes. Collectively, our results show that cachexia in myotubes could be prevented by the utilization of sodium pyruvate which impedes the metabolic modifications responsible for the acquisition of the cachectic features.


Assuntos
Caquexia , Ácido Pirúvico , Humanos , Caquexia/metabolismo , Ácido Pirúvico/farmacologia , Ácido Pirúvico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Sódio/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição STAT3/metabolismo
5.
Cancer Chemother Pharmacol ; 89(6): 809-823, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543764

RESUMO

PURPOSE: Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. METHODS: A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. RESULTS: Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. CONCLUSIONS: In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Feminino , Ouro/química , Compostos de Ouro , Humanos , Metano/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução , Proteômica
6.
Cells ; 11(4)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35203362

RESUMO

BACKGROUND: Adiponectin (Adn), released by adipocytes and other cell types such as skeletal muscle, has insulin-sensitizing and anti-inflammatory properties. Sphingosine 1-phosphate (S1P) is reported to act as effector of diverse biological actions of Adn in different tissues. S1P is a bioactive sphingolipid synthesized by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK) 1 and 2. Consolidated findings support the key role of S1P in the biology of skeletal muscle. METHODS AND RESULTS: Here we provide experimental evidence that S1P signalling is modulated by globular Adn treatment being able to increase the phosphorylation of SK1/2 as well as the mRNA expression levels of S1P4 in C2C12 myotubes. These findings were confirmed by LC-MS/MS that showed an increase of S1P levels after Adn treatment. Notably, the involvement of S1P axis in Adn action was highlighted since, when SK1 and 2 were inhibited by PF543 and ABC294640 inhibitors, respectively, not only the electrophysiological changes but also the increase of oxygen consumption and of aminoacid levels induced by the hormone, were significantly inhibited. CONCLUSION: Altogether, these findings show that S1P biosynthesis is necessary for the electrophysiological properties and oxidative metabolism of Adn in skeletal muscle cells.


Assuntos
Adiponectina , Lisofosfolipídeos , Fibras Musculares Esqueléticas , Esfingosina , Adiponectina/metabolismo , Animais , Linhagem Celular , Cromatografia Líquida , Lisofosfolipídeos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Estresse Oxidativo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Espectrometria de Massas em Tandem
7.
Med Res Rev ; 42(3): 1111-1146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34850406

RESUMO

Auranofin is an oral gold(I) compound, initially developed for the treatment of rheumatoid arthritis. Currently, Auranofin is under investigation for oncological application within a drug repurposing plan due to the relevant antineoplastic activity observed both in vitro and in vivo tumor models. In this review, we analysed studies in which Auranofin was used as a single drug or in combination with other molecules to enhance their anticancer activity or to overcome chemoresistance. The analysis of different targets/pathways affected by this drug in different cancer types has allowed us to highlight several interesting targets and effects of Auranofin besides the already well-known inhibition of thioredoxin reductase. Among these targets, inhibitory-κB kinase, deubiquitinates, protein kinase C iota have been frequently suggested. To rationalize the effects of Auranofin by a system biology-like approach, we exploited transcriptomic data obtained from a wide range of cell models, extrapolating the data deposited in the Connectivity Maps website and we attempted to provide a general conclusion and discussed the major points that need further investigation.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Auranofina/farmacologia , Auranofina/uso terapêutico , Resistência a Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Tiorredoxina Dissulfeto Redutase
8.
iScience ; 24(9): 103077, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34568797

RESUMO

Development of biological tissues in vitro is not a trivial task and requires the correct maturation of the selected cell line. To this aim, many attempts were done mainly by mimicking the biological environment using micro/nanopatterned or stimulated scaffolds. However, the obtainment of functional tissues in vitro is still far from being achieved. In contrast with the standard methods, we here present an easy approach for the maturation of myotubes toward the reproduction of muscular tissue. By using liquid crystalline networks with different stiffness and molecular alignment, we demonstrate how the material itself can give favorable interactions with myoblasts helping a correct differentiation. Electrophysiological studies demonstrate that myotubes obtained on these polymers have more adult-like morphology and better functional features with respect to those cultured on standard supports. The study opens to a platform for the differentiation of other cell lines in a simple and scalable way.

9.
Biomedicines ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440075

RESUMO

Au2phen ((2,9-dimethyl-1,10-phenanthroline)2Au2(µ-O)2)(PF6)2 and Auoxo6 ((6,6'-dimethyl-2,2'-bipyridine)2Au2(µ-O)2)(PF6)2 are two structurally related gold(III) complexes that were previously reported to display relevant and promising anticancer properties in vitro toward a large number of human cancer cell lines. To expand the knowledge on the molecular mechanisms through which these gold(III) complexes trigger apoptosis in cancer cells, further studies have been performed using A2780 ovarian cancer cells as reference models. For comparative purposes, parallel studies were carried out on the gold(III) complex AuL12 (dibromo(ethylsarcosinedithiocarbamate)gold(III)), whose proapoptotic profile had been earlier characterized in several cancer cell lines. Our results pointed out that all these gold(III) compounds manifest a significant degree of similarity in their cellular and proapoptotic effects; the main observed perturbations consist of potent thioredoxin reductase inhibition, disruption of the cell redox balance, impairment of the mitochondrial membrane potential, and induction of associated metabolic changes. In addition, evidence was gained of the remarkable contribution of ASK1 (apoptosis-signal-regulating kinase-1) and AKT pathways to gold(III)-induced apoptotic signaling. Overall, the observed effects may be traced back to gold(III) reduction and subsequent formation and release of gold(I) species that are able to bind and inhibit several enzymes responsible for the intracellular redox homeostasis, in particular the selenoenzyme thioredoxin reductase.

10.
Biomedicines ; 9(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203023

RESUMO

Cachexia is a disorder associated with several pathologies, including cancer. In this paper, we describe how cachexia is induced in myotubes by a metabolic shift towards fermentation, and the block of this metabolic modification prevents the onset of the cachectic phenotype. Cachectic myotubes, obtained by the treatment with conditioned medium from murine colon carcinoma cells CT26, show increased glucose uptake, decreased oxygen consumption, altered mitochondria, and increased lactate production. Interestingly, the block of glycolysis by 2-deoxy-glucose or lactate dehydrogenase inhibition by oxamate prevents the induction of cachexia, thus suggesting that this metabolic change is greatly involved in cachexia activation. The treatment with 2-deoxy-glucose or oxamate induces positive effects also in mitochondria, where mitochondrial membrane potential and pyruvate dehydrogenase activity became similar to control myotubes. Moreover, in myotubes treated with interleukin-6, cachectic phenotype is associated with a fermentative metabolism, and the inhibition of lactate dehydrogenase by oxamate prevents cachectic features. The same results have been achieved by treating myotubes with conditioned media from human colon HCT116 and human pancreatic MIAPaCa-2 cancer cell lines, thus showing that what has been observed with murine-conditioned media is a wide phenomenon. These findings demonstrate that cachexia induction in myotubes is linked with a metabolic shift towards fermentation, and inhibition of lactate formation impedes cachexia and highlights lactate dehydrogenase as a possible new tool for counteracting the onset of this pathology.

11.
Mol Reprod Dev ; 88(2): 175-184, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33336494

RESUMO

Research has been focused on determining the follicular microenviroment produced by the theca and granulosa cells since the molecular characterisation of this body fluid could lead to the understanding of several fertility problems. Oxidative stress may be one of the factors involved in female infertility since it plays a key role in the modulation of oocyte maturation and finally pregnancy. An increase in oxidative stress is correlated with inflammation and intense research was developed to understand the interaction between inflammation and adiponectin, based on the fact that many adipokines are inflammation related proteins linked to reactive oxygen species production. The aim of this study is to investigate the correlation between total adiponectin levels and oxidative stress amount in the serum and follicular fluid (FF) of women who undergone in vitro fertilization. Moreover we verified the expression of adiponectin in granulosa and cumulus cells. To clarify the predictive value of steroid hormones in human assisted reproduction, twelve steroid hormones in FF and serum, were quantified in a single run liquid chromatography/mass spectrometry, by using a multiple reaction monitoring mode and we related the serum and follicular fluids adiponectin levels with the concentration of the investigated steroid hormones.


Assuntos
Adiponectina/metabolismo , Microambiente Celular , Fertilização in vitro , Folículo Ovariano/citologia , Esteroides/metabolismo , Adiponectina/sangue , Adulto , Células do Cúmulo/metabolismo , Feminino , Líquido Folicular/metabolismo , Humanos , Ovário/metabolismo , Estresse Oxidativo
12.
Mol Reprod Dev ; 87(9): 986-997, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32885549

RESUMO

Among the follicular fluid (FF) components promoting the development of the oocyte are included glycoproteins, several fatty acids, and steroid hormones synthesized by the dominant follicle. For this, the analysis of the metabolites present in FF can determine the quality of the oocyte. FF composition is in part determined by local follicular metabolic processes and in part a plasma transudate. Since the causes of impaired fertility may be due to a metabolic imbalance, metabolomics is useful to identify low molecular weight metabolites. Oxidative stress is involved in human infertility and the use of metabolomics can be crucial to identify which other metabolites besides reactive oxygen species are involved in oxidative stress correlated to infertility. To obtain new information on the study of signaling molecules in FF, the knowledge of the lipid content will be important to improve information on the understanding of follicular development. The objective of this study is to identify (a) a metabolic profile and a lipid profile of FF in women undergoing in vitro fertilization and (b) to correlate the previous information obtained regarding adiponectin and oxidative stress with the metabolic and lipid profile obtained in the present study. As result, we found an increase in oxidative stress due to both an increase of androgens and an accumulation of lipids in the follicular environment and we suggest that this might be one of the causes of reduced fertility.


Assuntos
Fertilização in vitro , Líquido Folicular/metabolismo , Infertilidade Feminina/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Adulto , Microambiente Celular/fisiologia , Feminino , Líquido Folicular/química , Humanos , Infertilidade Feminina/terapia , Lipídeos/análise , Redes e Vias Metabólicas/fisiologia , Metabolômica , Oócitos/química , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Estresse Oxidativo/fisiologia
13.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660156

RESUMO

Cachexia is a devastating pathology induced by several kinds of diseases, including cancer. The hallmark of cancer cachexia is an extended weight loss mainly due to skeletal muscle wasting and fat storage depletion from adipose tissue. The latter exerts key functions for the health of the whole organism, also through the secretion of several adipokines. These hormones induce a plethora of effects in target tissues, ranging from metabolic to differentiating ones. Conversely, the decrease of the circulating level of several adipokines positively correlates with insulin resistance, metabolic syndrome, diabetes, and cardiovascular disease. A lot of findings suggest that cancer cachexia is associated with changed secretion of adipokines by adipose tissue. In agreement, cachectic patients show often altered circulating levels of adipokines. This review reported the findings of adipokines (leptin, adiponectin, resistin, apelin, and visfatin) in cancer cachexia, highlighting that to study in-depth the involvement of these hormones in this pathology could lead to the development of new therapeutic strategies.


Assuntos
Adipocinas/metabolismo , Caquexia/metabolismo , Neoplasias/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Caquexia/patologia , Humanos , Neoplasias/patologia
15.
Free Radic Res ; 53(11-12): 1155-1165, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31762356

RESUMO

The evidence about the health benefits of regular physical activity is well established. Exercise intensity is a significant variable and structured high-intensity interval training (HIIT) has been demonstrated to improve both whole-body and skeletal muscle metabolic health in different populations. Conversely, fatigue accumulation, if not resolved, leads to overwork, chronic fatigue syndrome (CFS), overtraining syndrome up to alterations of endocrine function, immune, systemic inflammation, and organic diseases with health threat. In response to temporary increases in stress during training, some athletes are unable to maintain sufficient caloric intake, thus suffering a negative energy balance that causes further stress. The regulation of the energy balance is controlled by the central nervous system through an elaborate interaction of the signalling that involves different tissues such as leptin, adiponectin and ghrelin whose provide important feedback to the hypothalamus to regulate the energy balance. Although exercise-induced reactive oxygen species are required for normal force production in muscle, high levels of ROS appear to promote contractile dysfunction. However, a high level of oxidative stress in may induce a rise in inflammatory markers and a disregulation in expression of adiponectin, leptin and grelin.


Assuntos
Exercício Físico , Inflamação/metabolismo , Estresse Oxidativo , Transdução de Sinais , Animais , Humanos , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Int J Mol Sci ; 20(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200595

RESUMO

Adiponectin, the most abundant secreted adipokine, has received great attention from the scientific community since its discovery [...].


Assuntos
Adiponectina/metabolismo , Doenças Metabólicas/etiologia , Adiponectina/genética , Animais , Humanos , Transdução de Sinais
17.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934785

RESUMO

In skeletal muscle, adiponectin has varied and pleiotropic functions, ranging from metabolic, anti-inflammatory, insulin-sensitizing to regenerative roles. Despite the important functions exerted by adiponectin, the study of the hormone in myopathies is still marginal. Myopathies include inherited and non-inherited/acquired neuromuscular pathologies characterized by muscular degeneration and weakness. This review reports current knowledge about adiponectin in myopathies, regarding in particular the role of adiponectin in some hereditary myopathies (as Duchenne muscular dystrophy) and non-inherited/acquired myopathies (such as idiopathic inflammatory myopathies and fibromyalgia). These studies show that some myopathies are characterized by decreased concentration of plasma adiponectin and that hormone replenishment induces beneficial effects in the diseased muscles. Overall, these findings suggest that adiponectin could constitute a future new therapeutic approach for the improvement of the abnormalities caused by myopathies.


Assuntos
Adiponectina/metabolismo , Doenças Musculares/metabolismo , Animais , Humanos , Padrões de Herança/genética , Músculo Esquelético/metabolismo
18.
J Mol Med (Berl) ; 97(6): 793-801, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927046

RESUMO

The role of adiponectin has been particularly deepened in diabetic muscles while the study of adiponectin in hereditary myopathies has been marginally investigated. Here, we report the study about adiponectin effects in Col6a1-/- (collagen VI-null) mice. Col6a1-/- mice show myophatic phenotype closer to that of patients with Bethlem myopathy, thus representing an excellent animal model for the study of this hereditary disease. Our findings demonstrate that Col6a1-/- mice have decreased plasma adiponectin content and diseased myoblasts have an impaired autocrine secretion of the hormone. Moreover, Col6a1-/- myoblasts show decreased glucose uptake and mitochondria with depolarized membrane potential and impaired functionality, as supported by decreased oxygen consumption. Exogenous addition of globular adiponectin modifies the features of Col6a1-/- myoblasts, becoming closer to that of the healthy myoblasts. Indeed, globular adiponectin enhances glucose uptake in Col6a1-/- myoblasts, modifies mitochondrial membrane potential, and restores oxygen consumption, turning closer to those of wild-type myoblasts. Finally, increase of plasma adiponectin level in Col6a1-/- mice is induced by fasting, a condition that has been previously shown to lead to the amelioration of the dystrophic phenotype. Collectively, our results demonstrate that exogenous replenishment of adiponectin reverses metabolic abnormalities observed in Col6a1-/- myoblasts. KEY MESSAGES: Col6a1-/- mice have decreased level of plasma adiponectin. Myoblasts from Col6a1-/- muscles have impaired local adiponectin secretion. Col6a1-/- myoblasts reveal altered metabolic features. Addition of exogenous adiponectin ameliorates Col6a1-/- metabolic features.


Assuntos
Adiponectina/metabolismo , Colágeno Tipo VI/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Adiponectina/sangue , Animais , Jejum/sangue , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Doenças Musculares/sangue , Mioblastos/metabolismo , Consumo de Oxigênio
19.
J Sports Med Phys Fitness ; 59(6): 975-981, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29877673

RESUMO

BACKGROUND: Several authors reported evidences for postactivation potentiation (PAP) but so far, few studies suggested suitable methods for use it to improve performance. On the other hand, it is well known that a fatiguing exercise can leads to a temporary imbalance between the production of reactive oxygen species (ROS) and their disposal. The purpose of our research was to evaluate the effects on performance and plasma oxidative stress of a specific program of conditioning in replacement of traditional sequences of warm-up. METHODS: We proposed a protocol of specific conditioning exercises and the effect on performance is evaluated by measuring leg power using the counter movement jump performed at different time after the protocol in athletes trained for different sports. Moreover, we measured the antioxidant capacity and the plasma levels of reactive oxygen metabolites before and at different times after the conditioning. RESULTS: Considering the evaluation of explosive force of athletes subdivided for the different sports we noticed that the swimmer and tennis players do not show a significant improvement in it after conditioning while the soccer and rugby players shown a significant prolongation of the effect. Moreover, the analysis of oxidative stress shows that it is not influenced by the PAP protocol used. CONCLUSIONS: We can conclude that our specific protocol seems effective in improving performance in athletes who used training methods able to affect their explosive strength like soccer players. On the contrary, in our proposed program this effect seems to be less evident in athletes who used resistance-training programs.


Assuntos
Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Força Muscular/fisiologia , Teste de Esforço/métodos , Humanos , Masculino , Contração Muscular/fisiologia , Estresse Oxidativo/fisiologia , Treinamento Resistido/métodos
20.
Free Radic Res ; 53(2): 126-138, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30513020

RESUMO

The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins - the most susceptible to oxidative modification - lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.


Assuntos
Exercício Físico/fisiologia , Proteínas Musculares/metabolismo , Plasma/metabolismo , Carbonilação Proteica/genética , Proteômica/métodos , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA