Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 64(5): 972-979, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27352362

RESUMO

OBJECTIVE: Magnetic nanoparticles (MNPs) are an emerging platform for targeted diagnostics in cancer. An important component needed for translation of MNPs is the detection and quantification of targeted MNPs bound to tumor cells. METHOD: This study explores the feasibility of a multifrequency nonlinear magnetic spectroscopic method that uses excitation and pickup coils and is capable of discriminating between quantities of bound and unbound MNPs in 0.5 ml samples of KB and Igrov human cancer cell lines. The method is tested over a range of five concentrations of MNPs from 0 to 80 µg/ml and five concentrations of cells from 50 to 400 000 count per ml. RESULTS: A linear model applied to the magnetic spectroscopy data was able to simultaneously measure bound and unbound MNPs with agreement between the model-fit and lab assay measurements (p < 0.001). The detectable iron of the presented method to bound and unbound MNPs was < 2 µg in a 0.5 ml sample. The linear model parameters used to determine the quantities of bound and unbound nanoparticles in KB cells were also used to measure the bound and unbound MNP in the Igrov cell line and vice versa. CONCLUSION: Nonlinear spectroscopic measurement of MNPs may be a useful method for studying targeted MNPs in oncology. SIGNIFICANCE: Determining the quantity of bound and unbound MNP in an unknown sample using a linear model represents an exciting opportunity to translate multifrequency nonlinear spectroscopy methods to in vivo applications where MNPs could be targeted to cancer cells.


Assuntos
Nanopartículas de Magnetita/química , Neoplasias Experimentais/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Nanopartículas de Magnetita/ultraestrutura , Dinâmica não Linear , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Biomed Tech (Berl) ; 60(5): 457-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26124044

RESUMO

This study implements nonlinear susceptibility magnitude imaging (SMI) with multifrequency intermodulation and phase encoding. An imaging grid was constructed of cylindrical wells of 3.5-mm diameter and 4.2-mm height on a hexagonal two-dimensional 61-voxel pattern with 5-mm spacing. Patterns of sample wells were filled with 40-µl volumes of Fe3O4 starch-coated magnetic nanoparticles (mNPs) with a hydrodynamic diameter of 100 nm and a concentration of 25 mg/ml. The imaging hardware was configured with three excitation coils and three detection coils in anticipation that a larger imaging system will have arrays of excitation and detection coils. Hexagonal and bar patterns of mNP were successfully imaged (R2>0.9) at several orientations. This SMI demonstration extends our prior work to feature a larger coil array, enlarged field-of-view, effective phase encoding scheme, reduced mNP sample size, and more complex imaging patterns to test the feasibility of extending the method beyond the pilot scale. The results presented in this study show that nonlinear SMI holds promise for further development into a practical imaging system for medical applications.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas de Magnetita/ultraestrutura , Teste de Materiais , Dinâmica não Linear , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
J Magn Magn Mater ; 378: 267-277, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505816

RESUMO

This study demonstrates a method for improving the resolution of susceptibility magnitude imaging (SMI) using spatial information that arises from the nonlinear magnetization characteristics of magnetic nanoparticles (mNPs). In this proof-of-concept study of nonlinear SMI, a pair of drive coils and several permanent magnets generate applied magnetic fields and a coil is used as a magnetic field sensor. Sinusoidal alternating current (AC) in the drive coils results in linear mNP magnetization responses at primary frequencies, and nonlinear responses at harmonic frequencies and intermodulation frequencies. The spatial information content of the nonlinear responses is evaluated by reconstructing tomographic images with sequentially increasing voxel counts using the combined linear and nonlinear data. Using the linear data alone it is not possible to accurately reconstruct more than 2 voxels with a pair of drive coils and a single sensor. However, nonlinear SMI is found to accurately reconstruct 12 voxels (R2 = 0.99, CNR = 84.9) using the same physical configuration. Several time-multiplexing methods are then explored to determine if additional spatial information can be obtained by varying the amplitude, phase and frequency of the applied magnetic fields from the two drive coils. Asynchronous phase modulation, amplitude modulation, intermodulation phase modulation, and frequency modulation all resulted in accurate reconstruction of 6 voxels (R2 > 0.9) indicating that time multiplexing is a valid approach to further increase the resolution of nonlinear SMI. The spatial information content of nonlinear mNP responses and the potential for resolution enhancement with time multiplexing demonstrate the concept and advantages of nonlinear SMI.

4.
J Magn Magn Mater ; 375: 164-176, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25477704

RESUMO

This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurement to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R2 = 0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R2 = 0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R2 = 0.97, p <0.001). These results demonstrate the concept of ASI and advantages of sASI.

5.
Phys Med Biol ; 59(4): 1047-71, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24504184

RESUMO

There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over five dilutions (R(2) > 0.98, p < 0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe ml(-1) mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution.


Assuntos
Diagnóstico por Imagem/instrumentação , Nanopartículas de Magnetita , Hidrodinâmica , Nanopartículas de Magnetita/química , Tamanho da Partícula , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA