Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 5089, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918371

RESUMO

Smart charging of electric vehicles can alleviate grid congestion and reduce charging costs. However, various electric vehicle models currently lack the technical capabilities to effectively implement smart charging since they cannot handle charging pauses or delays. These models enter sleep mode when charging is interrupted, preventing resumption afterwards. To avoid this, they should be continuously charged with their minimum charging power, even when a charging pause would be desirable, for instance with high electricity prices. This research examines this problem to inform various stakeholders, including policymakers and manufacturers, and stimulates the adoption of proactive measures that address this problem. Here, we demonstrate through technical charging tests that around one-third of tested car models suffer from this issue. Through model simulations we indicate that eliminating paused and delayed charging problems would double the smart charging potential for all applications. Lastly, we propose concrete legal and practical solutions to eliminate these problems.

2.
J Phys Chem B ; 119(6): 2711-25, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25393885

RESUMO

With hydrogen bonding of the amino group of aniline-d5 we can identify the roles of Fermi enhanced combination and overtone states in intramolecular vibrational re-distribution (IVR) pathways for N-H stretching excitations. Using linear Fourier transform infrared (FT-IR) spectroscopy, ultrafast one- and two-color IR-pump-IR-probe spectroscopy, and femtosecond two-dimensional IR spectroscopy, we can identify the primary accepting modes for N-H stretching excitations. In particular, a key role is played by the δ(NH2) bending degree of freedom, either via its δ = 2 overtone state or via a combination state with the ν(C═C) ring stretching mode. No significant transient population in these Fermi enhanced combination/overtone states can be observed, a consequence of similar decay rates of these Fermi enhanced combination/overtone states and of the N-H stretching states. A similar magnitude of the transient response of the two fingerprint modes regardless of direct excitation of the Fermi enhanced combination/overtone levels or of the N-H stretching states suggests an underlying coupling mechanism facilitating common IVR pathways. This mechanism is expected to be of general importance for other organic compounds with hydrogen-bonded amino groups, including DNA bases.

3.
J Phys Chem B ; 117(49): 15843-55, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24000972

RESUMO

Hydrogen bonding of the amino group of aniline-d5 results in a huge enhancement of the NH2 bending overtone absorption strength, mainly attributed to the Fermi resonance effect. A quantitative analysis is presented, using a hybrid mode representation and encompassing experimental data on aniline with 0, 1, or 2 hydrogen bonds to dimethylsulfoxide (DMSO). Changes in enthalpy, hydrogen-bonding-induced frequency shifts, and the transition dipole moment increase of the local N-H stretching oscillator all demonstrate that the hydrogen bond is strongest in the single hydrogen-bonded complex. Linear IR overtone spectra show that the oscillator strength decreases upon hydrogen bonding for the N-H stretching overtones, which is opposite to the effect on the fundamental N-H stretching transitions. Polarization resolved 2D-IR spectra provide detailed information on the N-H stretching overtone manifold and support the relative orientations of the various IR transitions.


Assuntos
Compostos de Anilina/química , Espectrofotometria Infravermelho , Dimetil Sulfóxido/química , Ligação de Hidrogênio , Cinética
4.
J Phys Chem A ; 117(5): 845-54, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23317104

RESUMO

Dynamics and couplings of N-H stretching vibrations of chemically modified guanosine-cytidine (G·C) base pairs in chloroform are investigated with linear infrared spectroscopy and ultrafast two-dimensional infrared (2D-IR) spectroscopy. Comparison of G·C absorption spectra before and after H/D exchange reveals significant N-H stretching absorption in the region from 2500 up to 3300 cm(-1). Both of the local stretching modes ν(C)(NH(2))(b) of the hydrogen-bonded N-H moiety of the cytidine NH(2) group and ν(G)(NH) of the guanosine N-H group contribute to this broad absorption band. Its complex line shape is attributed to Fermi resonances of the N-H stretching modes with combination and overtones of fingerprint vibrations and anharmonic couplings to low-frequency modes. Cross-peaks in the nonlinear 2D spectra between the 3491 cm(-1) free N-H oscillator band and the bands centered at 3145 and 3303 cm(-1) imply N-H···O═C hydrogen bond character for both of these transitions. Time evolution illustrates that the 3303 cm(-1) band is composed of a nearly homogeneous band absorbing at 3301 cm(-1), ascribed to ν(G)(NH(2))(b), and a broad inhomogeneous band peaking at 3380 cm(-1) with mainly guanosine carbonyl overtone character. Kinetics and signal strengths indicate a <0.2 ps virtually complete population transfer from the excited ν(G)(NH(2))(b) mode to the ν(G)(NH) mode at 3145 cm(-1), suggesting lifetime broadening as the dominant source for the homogeneous line shape of the 3301 cm(-1) transition. For the 3145 cm(-1) band, a 0.3 ps population lifetime was obtained.


Assuntos
Citidina/química , Guanosina/química , Pareamento de Bases , Clorofórmio/química , Medição da Troca de Deutério , Cinética , Soluções , Espectrofotometria Infravermelho
5.
J Phys Chem A ; 117(3): 594-606, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23234439

RESUMO

We explore the N-H stretching vibrations of adenosine-thymidine base pairs in chloroform solution with linear and nonlinear infrared spectroscopy. Based on estimates from NMR measurements and ab initio calculations, we conclude that adenosine and thymidine form hydrogen bonded base pairs in Watson-Crick, reverse Watson-Crick, Hoogsteen, and reverse Hoogsteen configurations with similar probability. Steady-state concentration and temperature dependent linear FT-IR studies, including H/D exchange experiments, reveal that these hydrogen-bonded base pairs have complex N-H/N-D stretching spectra with a multitude of spectral components. Nonlinear 2D-IR spectroscopic results, together with IR-pump-IR-probe measurements, as also corroborated by ab initio calculations, reveal that the number of N-H stretching transitions is larger than the total number of N-H stretching modes. This is explained by couplings to other modes, such as an underdamped low-frequency hydrogen-bond mode, and a Fermi resonance with NH(2) bending overtone levels of the adenosine amino-group. Our results demonstrate that modeling based on local N-H stretching vibrations only is not sufficient and call for further refinement of the description of the N-H stretching manifolds of nucleic acid base pairs of adenosine and thymidine, incorporating a multitude of couplings with fingerprint and low-frequency modes.


Assuntos
Adenosina/química , Teoria Quântica , Timidina/química , Pareamento de Bases , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
6.
J Phys Chem A ; 116(29): 7636-44, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22724894

RESUMO

The N-H stretching vibrations of adenine, one of the building blocks of DNA, are studied by combining infrared absorption and nonlinear two-dimensional infrared spectroscopy with ab initio calculations. We determine diagonal and off-diagonal anharmonicities of N-H stretching vibrations in chemically modified adenosine monomer dissolved in chloroform. For the single-quantum excitation manifold, the normal mode picture with symmetric and asymmetric NH(2) stretching vibrations is fully appropriate. For the two-quantum excitation manifold, however, the interplay between intermode coupling and frequency shifts due to a large diagonal anharmonicity leads to a situation where strong mixing does not occur. We compare our findings with previously reported values obtained on overtone spectroscopy of coupled hydrogen stretching oscillators.


Assuntos
Adenosina/química , Hidrogênio/química , Nitrogênio/química , Clorofórmio/química , DNA/química , Ligação de Hidrogênio , Cinética , Modelos Químicos , Estrutura Molecular , Teoria Quântica , Soluções , Espectrofotometria Infravermelho , Termodinâmica , Fatores de Tempo , Vibração , Água/química
7.
Phys Chem Chem Phys ; 13(19): 8723-32, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21331386

RESUMO

The dual photochemistry of anthracene-9,10-endoperoxide (APO) was investigated in a fs UV pump-supercontinuum probe experiment, along with anthracene (AC) and anthraquinone (AQ) for comparison. Excitation of APO at 282 nm leads to 100% product formation by two competing photoreaction channels. Cycloreversion generates with a ∼25% quantum yield (QY) (1)O(2) and AC vibrationally excited in the singlet electronic ground state (hot AC). 1-2% of the AC is generated in the lowest triplet state, but no AC is generated in electronically excited singlet states. Generation and cooling of hot AC are modeled using solution phase and broadened gas-phase AC absorption spectra at various temperatures. Results indicate ultrafast generation of hot AC within 3 ps, much faster than reported before for derivatives of anthracene endoperoxide, and subsequent cooling with an 18 ps time constant. The homolytic O-O cleavage pathway generates a biradical, which converts into electronically excited diepoxide (DE). Our data indicate a 1.5 ps time constant that we tentatively assign to the biradical decay and DE formation. Cooling of DE in this electronically excited state takes place with a ∼21 ps time constant. Excitation of AQ at 266 nm is followed by an ultrafast population of the T(1)(nπ*) triplet state of AQ with a time constant of (160 ± 60) fs.


Assuntos
Antracenos/química , Antracenos/síntese química , Estrutura Molecular , Fotoquímica , Teoria Quântica , Espectrofotometria Ultravioleta , Fatores de Tempo
8.
J Phys Chem B ; 115(18): 5484-92, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21244064

RESUMO

N-H stretching vibrations of hydrogen-bonded guanosine-cytidine (G·C) base pairs in chloroform solution are studied with linear and ultrafast nonlinear infrared (IR) spectroscopy. Assignment of the IR-active bands in the linear spectrum is made possible by combining structural information on the hydrogen bonds in G·C base pairs with literature results of density functional theory calculations, and empirical relations connecting frequency shifts and intensity of the IR-active vibrations. A local mode representation of N-H stretching vibrations is adopted, consisting of ν(G)(NH(2))(f) and ν(C)(NH(2))(f) modes for free NH groups of G and C, and of ν(G)(NH(2))(b), ν(G)(NH), and ν(C)(NH(2))(b) modes associated with N-H stretching motions of hydrogen-bonded NH groups. The couplings and relaxation dynamics of the N-H stretching excitations are studied with femtosecond mid-infrared two-dimensional (2D) and pump-probe spectroscopy. The N-H stretching vibrations of the free NH groups of G and C have an average population lifetime of 2.4 ps. Besides a vibrational population lifetime shortening to subpicosecond values observed for the hydrogen-bonded N-H stretching vibrations, the 2D spectra reveal vibrational excitation transfer from the ν(G)(NH(2))(b) mode to the ν(G)(NH) and/or ν(C)(NH(2))(b) modes. The underlying intermode vibrational couplings are on the order of 10 cm(-1).


Assuntos
Citidina/química , Guanosina/química , Pareamento de Bases , Hidrogênio/química , Ligação de Hidrogênio , Nitrogênio/química , Soluções/química , Espectrofotometria Infravermelho , Fatores de Tempo
9.
Chemphyschem ; 11(6): 1283-8, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20340121

RESUMO

A new mixed experimental and theoretical approach for determining the exact three-dimensional orientation of electronic transition dipole moments (tdms) within the molecular frame is discussed. Results of applying this method on Chlorophyll a and the dye Coumarin 314 (C314) are presented. For C314 the possible influence of a mixture of E- and Z-isomers in the sample on the determined electronic tdm is investigated. Moreover, the robustness of the method is investigated with the C314 data.

10.
J Chem Phys ; 131(12): 124511, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791898

RESUMO

A method is presented that combines femtosecond polarization resolved UV/visible pump-IR probe spectroscopy and density functional theory calculations in determining the three-dimensional orientation of an electronic transition dipole moment (tdm) within the molecular structure. The method is demonstrated on the approximately planar molecule coumarin 314 (C314) dissolved in acetonitrile, which can exist in two ground state configurations: the E- and the Z-isomer. Based on an exhaustive search analysis on polarization resolved measurement data for four different vibrational modes, it is concluded that C314 in acetonitrile is the E-isomer. The electronic tdm vector for the electronic S(0)-->S(1) transition is determined and the analysis shows that performing the procedure for four vibrational modes instead of the minimally required three reduces the 1sigma probability area from 2.34% to 2.24% of the solution space. Moreover, the fastest rotational correlation time tau(c) for the C314 E-isomer is determined to be 26+/-2 ps.


Assuntos
Algoritmos , Cumarínicos/química , Cristalografia/métodos , Modelos Químicos , Espectrofotometria Ultravioleta/métodos , Simulação por Computador , Isomerismo , Conformação Molecular
11.
J Phys Chem A ; 113(22): 6289-96, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19435357

RESUMO

The wavelength dependence of the photochemistry of anthracene-9,10-endoperoxide (APO) in acetonitrile was quantitatively investigated at 5 degrees C, with excitation varied from 240 to 450 nm. Anthracene (AC) and a diepoxide (DE) were identified as the main primary photoproducts. After short exposure times DE was at all wavelengths the dominating photoproduct, while AC was only formed for lambda

12.
J Phys Chem A ; 109(40): 8962-8, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16331998

RESUMO

The ring-opening dynamics of the photochromic switch 1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole] in tetrachloroethene is studied with both femtosecond time-resolved ultraviolet (UV)/visible and UV/mid-infrared (IR) pump-probe spectroscopy. During the first picosecond we identify two new transient features in the UV/vis experiments, the first of which we assign to spiropyran S1 --> S(n) absorption (lifetime < or = 0.2 ps). The second feature (lifetime 0.5 +/- 0.2 ps) we tentatively assign to the merocyanine T2 state. After 1 ps both probing methods show biexponential merocyanine formation kinetics, with average time constants of 17 +/- 3 and 350 +/- 20 ps. In the UV/IR experiments, the initial dynamics show more dispersion in formation times than in the UV/vis measurements, whereas the slower time constant is the same in both. A weak transient IR signal at approximately 1360 cm(-1) demonstrates that this biexponentiality is caused by a sequential isomerization between two merocyanine species. Lifetimes provide evidence that the merocyanine S1 state is not involved in the photochemical reaction.

13.
Annu Rev Phys Chem ; 56: 337-67, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15796704

RESUMO

Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.


Assuntos
Análise Espectral/métodos , Vibração , Transporte de Elétrons , Ligação de Hidrogênio , Fotoquímica , Prótons , Teoria Quântica , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tempo
14.
J Am Chem Soc ; 126(12): 3789-94, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15038732

RESUMO

Conversion of electronic excitation energy into vibrational energy was investigated for photochromic spiropyran molecules, using femtosecond UV-mid-IR pump-probe spectroscopy. We observe a weaker energy gap dependence than demanded by the "energy gap law". We demonstrate that large conformational changes accompanying the optical excitation can explain the observed time scale and energy gap dependence of ultrafast S(1) --> S(0) internal conversion processes. The possibility of dramatic deviations from standard energy gap law behavior is predicted. We conclude that controlling molecular conformations by rigid environments can have a substantial impact on photophysical and (bio)chemical processes.

15.
J Am Chem Soc ; 125(10): 3028-34, 2003 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-12617669

RESUMO

We present a femtosecond UV-mid-IR pump-probe study of the photochemical ring-opening reaction of the spiropyran 1',3',3',-trimethylspiro-[-2H-1-benzopyran-2,2'-indoline] (also known as BIPS) in tetrachloroethene, using 70 fs UV excitation pulses and probing with 100 fs mid-IR pulses. The time evolution of the transient IR absorption spectrum was monitored over the first 100 ps after UV excitation. We conclude that the merocyanine product is formed with a 28 ps time constant, contrasting with a 0.9 ps time constant obtained in previous investigations where the rise of absorption bands at visible wavelengths were associated with product formation. We deduce from the observed strong recovery of the spiropyran IR absorption bleaches that, in tetrachloroethene, the main decay channel for the S(1) excited state of the spiropyran BIPS, is internal conversion to the spiropyran S(0) state with a quantum yield of > or = 0.9. This puts an upper limit of 0.1 to the quantum yield of the photochemical ring-opening reaction.

16.
J Am Chem Soc ; 124(24): 6950-6, 2002 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12059218

RESUMO

Many genomics assays use profluorescent oligonucleotide probes that are covalently labeled at the 5' end with a fluorophore and at the 3' end with a quencher. It is generally accepted that quenching in such probes without a stem structure occurs through Förster resonance energy transfer (FRET or FET) and that the fluorophore and quencher should be chosen to maximize their spectral overlap. We have studied two dual-labeled probes with two different fluorophores, the same sequence and quencher, and with no stem structure: 5'Cy3.5-beta-actin-3'BHQ1 and 5'FAM-beta-actin-3'BHQ1. Analysis of their absorption spectra, relative fluorescence quantum yields, and fluorescence lifetimes shows that static quenching occurs in both of these dual-labeled probes and that it is the dominant quenching mechanism in the Cy3.5-BHQ1 probe. Absorption spectra are consistent with the formation of an excitonic dimer, an intramolecular heterodimer between the Cy3.5 fluorophore and the BHQ1 quencher.


Assuntos
Corantes Fluorescentes/química , Sondas de Oligonucleotídeos/química , Actinas/genética , DNA Complementar/análise , DNA Complementar/química , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA