Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1180962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781703

RESUMO

Background: As artificial intelligence (AI) continues to advance with breakthroughs in natural language processing (NLP) and machine learning (ML), such as the development of models like OpenAI's ChatGPT, new opportunities are emerging for efficient curation of electronic health records (EHR) into real-world data (RWD) for evidence generation in oncology. Our objective is to describe the research and development of industry methods to promote transparency and explainability. Methods: We applied NLP with ML techniques to train, validate, and test the extraction of information from unstructured documents (e.g., clinician notes, radiology reports, lab reports, etc.) to output a set of structured variables required for RWD analysis. This research used a nationwide electronic health record (EHR)-derived database. Models were selected based on performance. Variables curated with an approach using ML extraction are those where the value is determined solely based on an ML model (i.e. not confirmed by abstraction), which identifies key information from visit notes and documents. These models do not predict future events or infer missing information. Results: We developed an approach using NLP and ML for extraction of clinically meaningful information from unstructured EHR documents and found high performance of output variables compared with variables curated by manually abstracted data. These extraction methods resulted in research-ready variables including initial cancer diagnosis with date, advanced/metastatic diagnosis with date, disease stage, histology, smoking status, surgery status with date, biomarker test results with dates, and oral treatments with dates. Conclusion: NLP and ML enable the extraction of retrospective clinical data in EHR with speed and scalability to help researchers learn from the experience of every person with cancer.

2.
Cancers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980739

RESUMO

Meaningful real-world evidence (RWE) generation requires unstructured data found in electronic health records (EHRs) which are often missing from administrative claims; however, obtaining relevant data from unstructured EHR sources is resource-intensive. In response, researchers are using natural language processing (NLP) with machine learning (ML) techniques (i.e., ML extraction) to extract real-world data (RWD) at scale. This study assessed the quality and fitness-for-use of EHR-derived oncology data curated using NLP with ML as compared to the reference standard of expert abstraction. Using a sample of 186,313 patients with lung cancer from a nationwide EHR-derived de-identified database, we performed a series of replication analyses demonstrating some common analyses conducted in retrospective observational research with complex EHR-derived data to generate evidence. Eligible patients were selected into biomarker- and treatment-defined cohorts, first with expert-abstracted then with ML-extracted data. We utilized the biomarker- and treatment-defined cohorts to perform analyses related to biomarker-associated survival and treatment comparative effectiveness, respectively. Across all analyses, the results differed by less than 8% between the data curation methods, and similar conclusions were reached. These results highlight that high-performance ML-extracted variables trained on expert-abstracted data can achieve similar results as when using abstracted data, unlocking the ability to perform oncology research at scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA