Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 625(7995): 603-610, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200312

RESUMO

The genetic code of living cells has been reprogrammed to enable the site-specific incorporation of hundreds of non-canonical amino acids into proteins, and the encoded synthesis of non-canonical polymers and macrocyclic peptides and depsipeptides1-3. Current methods for engineering orthogonal aminoacyl-tRNA synthetases to acylate new monomers, as required for the expansion and reprogramming of the genetic code, rely on translational readouts and therefore require the monomers to be ribosomal substrates4-6. Orthogonal synthetases cannot be evolved to acylate orthogonal tRNAs with non-canonical monomers (ncMs) that are poor ribosomal substrates, and ribosomes cannot be evolved to polymerize ncMs that cannot be acylated onto orthogonal tRNAs-this co-dependence creates an evolutionary deadlock that has essentially restricted the scope of translation in living cells to α-L-amino acids and closely related hydroxy acids. Here we break this deadlock by developing tRNA display, which enables direct, rapid and scalable selection for orthogonal synthetases that selectively acylate their cognate orthogonal tRNAs with ncMs in Escherichia coli, independent of whether the ncMs are ribosomal substrates. Using tRNA display, we directly select orthogonal synthetases that specifically acylate their cognate orthogonal tRNA with eight non-canonical amino acids and eight ncMs, including several ß-amino acids, α,α-disubstituted-amino acids and ß-hydroxy acids. We build on these advances to demonstrate the genetically encoded, site-specific cellular incorporation of ß-amino acids and α,α-disubstituted amino acids into a protein, and thereby expand the chemical scope of the genetic code to new classes of monomers.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Escherichia coli , Código Genético , RNA de Transferência , Acilação , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Código Genético/genética , Hidroxiácidos/química , Hidroxiácidos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Especificidade por Substrato , Ribossomos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Cell Rep ; 41(6): 111607, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351412

RESUMO

Transcriptional silencing through the Polycomb silencing machinery utilizes a "read-write" mechanism involving histone tail modifications. However, nucleation of silencing and long-term stable transmission of the silenced state also requires P-olycomb Repressive Complex 2 (PRC2) accessory proteins, whose molecular role is poorly understood. The Arabidopsis VEL proteins are accessory proteins that interact with PRC2 to nucleate and propagate silencing at the FLOWERING LOCUS C (FLC) locus, enabling early flowering in spring. Here, we report that VEL proteins contain a domain related to an atypical four-helix bundle that engages in spontaneous concentration-dependent head-to-tail polymerization to assemble dynamic biomolecular condensates. Mutations blocking polymerization of this VEL domain prevent Polycomb silencing at FLC. Plant VEL proteins thus facilitate assembly of dynamic multivalent Polycomb complexes required for inheritance of the silenced state.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Polimerização , Inativação Gênica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Flores/genética , Flores/metabolismo
3.
J Biol Chem ; 298(11): 102540, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174674

RESUMO

PHD fingers are modular domains in chromatin-associated proteins that decode the methylation status of histone H3 tails. A PHD finger signature is found in plant vernalization (VEL) proteins, which function as accessory factors of the Polycomb system to control flowering in Arabidopsis through an epigenetic silencing mechanism. It has been proposed that VEL PHD fingers bind to methylated histone H3 tails to facilitate association of the Polycomb silencing machinery with target genes. Here, we use structural analysis by X-ray crystallography to show that the VEL PHD finger forms the central module of a larger compact tripartite superdomain that also contains a zinc finger and a four-helix bundle. This PHD superdomain fold is only found in one other family, the OBERON proteins, which have multiple functions in Arabidopsis meristems to control plant growth. The putative histone-binding surface of OBERON proteins exhibits the characteristic three-pronged pocket of histone-binding PHD fingers and binds to methylated histone H3 tails. However, that of VEL PHD fingers lacks this architecture and exhibits unusually high positive surface charge. This VEL PHD superdomain neither binds to unmodified nor variously modified histone H3 tails, as demonstrated by isothermal calorimetry and NMR spectroscopy. Instead, the VEL PHD superdomain interacts with negatively charged polymers. Our evidence argues for evolution of a divergent function for the PHD superdomain in vernalization that does not involve histone tail decoding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Histonas , Arabidopsis/genética , Arabidopsis/fisiologia , Histonas/metabolismo , Ligação Proteica , Periodicidade , Flores/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia
4.
Sensors (Basel) ; 22(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808487

RESUMO

Pain is a reliable indicator of health issues; it affects patients' quality of life when not well managed. The current methods in the clinical application undergo biases and errors; moreover, such methods do not facilitate continuous pain monitoring. For this purpose, the recent methodologies in automatic pain assessment were introduced, which demonstrated the possibility for objectively and robustly measuring and monitoring pain when using behavioral cues and physiological signals. This paper focuses on introducing a reliable automatic system for continuous monitoring of pain intensity by analyzing behavioral cues, such as facial expressions and audio, and physiological signals, such as electrocardiogram (ECG), electromyogram (EMG), and electrodermal activity (EDA) from the X-ITE Pain Dataset. Several experiments were conducted with 11 datasets regarding classification and regression; these datasets were obtained from the database to reduce the impact of the imbalanced database problem. With each single modality (Uni-modality) experiment, we used a Random Forest [RF] baseline method, a Long Short-Term Memory (LSTM) method, and a LSTM using a sample weighting method (called LSTM-SW). Further, LSTM and LSTM-SW were used with fused modalities (two modalities = Bi-modality and all modalities = Multi-modality) experiments. Sample weighting was used to downweight misclassified samples during training to improve the performance. The experiments' results confirmed that regression is better than classification with imbalanced datasets, EDA is the best single modality, and fused modalities improved the performance significantly over the single modality in 10 out of 11 datasets.


Assuntos
Redes Neurais de Computação , Qualidade de Vida , Eletrocardiografia , Humanos , Dor , Medição da Dor/métodos
5.
J Med Chem ; 65(10): 7246-7261, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35581674

RESUMO

The canonical Wingless-related integration site signaling pathway plays a critical role in human physiology, and its dysregulation can lead to an array of diseases. ß-Catenin is a multifunctional protein within this pathway and an attractive yet challenging therapeutic target, most notably in oncology. This has stimulated the search for potent small-molecule inhibitors binding directly to the ß-catenin surface to inhibit its protein-protein interactions and downstream signaling. Here, we provide an account of the claimed (and some putative) small-molecule ligands of ß-catenin from the literature. Through in silico analysis, we show that most of these molecules contain promiscuous chemical substructures notorious for interfering with screening assays. Finally, and in line with this analysis, we demonstrate using orthogonal biophysical techniques that none of the examined small molecules bind at the surface of ß-catenin. While shedding doubts on their reported mode of action, this study also reaffirms ß-catenin as a prominent target in drug discovery.


Assuntos
Bibliotecas de Moléculas Pequenas , Via de Sinalização Wnt , beta Catenina , Animais , Fenômenos Biofísicos , Descoberta de Drogas , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
6.
Nature ; 602(7898): 701-707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35173328

RESUMO

Hydrolase enzymes, including proteases, are encoded by 2-3% of the genes in the human genome and 14% of these enzymes are active drug targets1. However, the activities and substrate specificities of many proteases-especially those embedded in membranes-and other hydrolases remain unknown. Here we report a strategy for creating mechanism-based, light-activated protease and hydrolase substrate traps in complex mixtures and live mammalian cells. The traps capture substrates of hydrolases, which normally use a serine or cysteine nucleophile. Replacing the catalytic nucleophile with genetically encoded 2,3-diaminopropionic acid allows the first step reaction to form an acyl-enzyme intermediate in which a substrate fragment is covalently linked to the enzyme through a stable amide bond2; this enables stringent purification and identification of substrates. We identify new substrates for proteases, including an intramembrane mammalian rhomboid protease RHBDL4 (refs. 3,4). We demonstrate that RHBDL4 can shed luminal fragments of endoplasmic reticulum-resident type I transmembrane proteins to the extracellular space, as well as promoting non-canonical secretion of endogenous soluble endoplasmic reticulum-resident chaperones. We also discover that the putative serine hydrolase retinoblastoma binding protein 9 (ref. 5) is an aminopeptidase with a preference for removing aromatic amino acids in human cells. Our results exemplify a powerful paradigm for identifying the substrates and activities of hydrolase enzymes.


Assuntos
Peptídeo Hidrolases , Serina Endopeptidases , Animais , Proteínas de Ciclo Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias , Peptídeo Hidrolases/metabolismo , Serina/metabolismo , Especificidade por Substrato
7.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502809

RESUMO

Face and person detection are important tasks in computer vision, as they represent the first component in many recognition systems, such as face recognition, facial expression analysis, body pose estimation, face attribute detection, or human action recognition. Thereby, their detection rate and runtime are crucial for the performance of the overall system. In this paper, we combine both face and person detection in one framework with the goal of reaching a detection performance that is competitive to the state of the art of lightweight object-specific networks while maintaining real-time processing speed for both detection tasks together. In order to combine face and person detection in one network, we applied multi-task learning. The difficulty lies in the fact that no datasets are available that contain both face as well as person annotations. Since we did not have the resources to manually annotate the datasets, as it is very time-consuming and automatic generation of ground truths results in annotations of poor quality, we solve this issue algorithmically by applying a special training procedure and network architecture without the need of creating new labels. Our newly developed method called Simultaneous Face and Person Detection (SFPD) is able to detect persons and faces with 40 frames per second. Because of this good trade-off between detection performance and inference time, SFPD represents a useful and valuable real-time framework especially for a multitude of real-world applications such as, e.g., human-robot interaction.


Assuntos
Reconhecimento Facial , Robótica , Expressão Facial , Humanos , Processamento de Imagem Assistida por Computador
8.
Nat Commun ; 11(1): 2056, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345963

RESUMO

Papillary thyroid cancer (PTC) is the most common type of endocrine malignancy. By RNA-seq analysis, we identify a RET rearrangement in the tumour material of a patient who does not harbour any known RAS or BRAF mutations. This new gene fusion involves exons 1-4 from the 5' end of the Trk fused Gene (TFG) fused to the 3' end of RET tyrosine kinase leading to a TFG-RET fusion which transforms immortalized human thyroid cells in a kinase-dependent manner. TFG-RET oligomerises in a PB1 domain-dependent manner and oligomerisation of TFG-RET is required for oncogenic transformation. Quantitative proteomic analysis reveals the upregulation of E3 Ubiquitin ligase HUWE1 and DUBs like USP9X and UBP7 in both tumor and metastatic lesions, which is further confirmed in additional patients. Expression of TFG-RET leads to the upregulation of HUWE1 and inhibition of HUWE1 significantly reduces RET-mediated oncogenesis.


Assuntos
Proteínas de Fusão Oncogênica/genética , Proteínas/genética , Proteogenômica , Proteínas Proto-Oncogênicas c-ret/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/patologia , Humanos , Concentração Inibidora 50 , Metástase Linfática/patologia , Mutação/genética , Proteínas de Fusão Oncogênica/metabolismo , Multimerização Proteica , Proteínas/química , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para Cima
9.
Cell ; 180(3): 427-439.e12, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004461

RESUMO

Cell polarity is fundamental for tissue morphogenesis in multicellular organisms. Plants and animals evolved multicellularity independently, and it is unknown whether their polarity systems are derived from a single-celled ancestor. Planar polarity in animals is conferred by Wnt signaling, an ancient signaling pathway transduced by Dishevelled, which assembles signalosomes by dynamic head-to-tail DIX domain polymerization. In contrast, polarity-determining pathways in plants are elusive. We recently discovered Arabidopsis SOSEKI proteins, which exhibit polar localization throughout development. Here, we identify SOSEKI as ancient polar proteins across land plants. Concentration-dependent polymerization via a bona fide DIX domain allows these to recruit ANGUSTIFOLIA to polar sites, similar to the polymerization-dependent recruitment of signaling effectors by Dishevelled. Cross-kingdom domain swaps reveal functional equivalence of animal and plant DIX domains. We trace DIX domains to unicellular eukaryotes and thus show that DIX-dependent polymerization is an ancient mechanism conserved between kingdoms and central to polarity proteins.


Assuntos
Arabidopsis/química , Arabidopsis/citologia , Polaridade Celular/fisiologia , Células Vegetais/fisiologia , Polimerização , Domínios Proteicos , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteína Axina/química , Proteína Axina/metabolismo , Bryopsida/química , Bryopsida/citologia , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Células COS , Chlorocebus aethiops , Proteínas Desgrenhadas/metabolismo , Células HEK293 , Humanos , Marchantia/química , Marchantia/citologia , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt
10.
Sci Signal ; 12(611)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822591

RESUMO

The Wnt-ß-catenin signaling pathway regulates embryonic development and tissue homeostasis throughout the animal kingdom. Signaling through this pathway crucially depends on the opposing activities of two cytoplasmic multiprotein complexes: the Axin destruction complex, which destabilizes the downstream effector ß-catenin, and the Dishevelled signalosome, which inactivates the Axin complex and thus enables ß-catenin to accumulate and operate a transcriptional switch in the nucleus. These complexes are assembled by dynamic head-to-tail polymerization of the DIX domains of Axin or Dishevelled, respectively, which increases their avidity for signaling effectors. Axin also binds to Dishevelled through its DIX domain. Here, we report the crystal structure of the heterodimeric complex between the two DIX domains of Axin and Dishevelled. This heterotypic interface resembles the interfaces observed in the individual homopolymers, albeit exhibiting a slight rearrangement of electrostatic interactions and hydrogen bonds, consistent with the heterotypic interaction being favored over the homotypic Axin DIX interaction. Last, cell-based signaling assays showed that heterologous polymerizing domains functionally substituted for the DIX domain of Dishevelled provided that these Dishevelled chimeras retained a DIX head or tail surface capable of binding to Axin. These findings indicate that the interaction between Dishevelled and Axin through their DIX domains is crucial for signaling to ß-catenin.


Assuntos
Proteína Axina , Proteínas Desgrenhadas , Transdução de Sinais , beta Catenina , Animais , Proteína Axina/química , Proteína Axina/genética , Proteína Axina/metabolismo , Células COS , Chlorocebus aethiops , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Células HEK293 , Humanos , Domínios Proteicos , beta Catenina/química , beta Catenina/genética , beta Catenina/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(42): 20977-20983, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570581

RESUMO

The Chip/LIM-domain binding protein (LDB)-single-stranded DNA-binding protein (SSDP) (ChiLS) complex controls numerous cell-fate decisions in animal cells, by mediating transcription of developmental control genes via remote enhancers. ChiLS is recruited to these enhancers by lineage-specific LIM-domain proteins that bind to its Chip/LDB subunit. ChiLS recently emerged as the core module of the Wnt enhanceosome, a multiprotein complex that primes developmental control genes for timely Wnt responses. ChiLS binds to NPFxD motifs within Pygopus (Pygo) and the Osa/ARID1A subunit of the BAF chromatin remodeling complex, which could synergize with LIM proteins in tethering ChiLS to enhancers. Chip/LDB and SSDP both contain N-terminal dimerization domains that constitute the bulk of their structured cores. Here, we report the crystal structures of these dimerization domains, in part aided by DARPin chaperones. We conducted systematic surface scanning by structure-designed mutations, followed by in vitro and in vivo binding assays, to determine conserved surface residues required for binding between Chip/LDB, SSDP, and Pygo-NPFxD. Based on this, and on the 4:2 (SSDP-Chip/LDB) stoichiometry of ChiLS, we derive a highly constrained structural model for this complex, which adopts a rotationally symmetrical SSDP2-LDB2-SSDP2 architecture. Integrity of ChiLS is essential for Pygo binding, and our mutational analysis places the NPFxD pockets on either side of the Chip/LDB dimer, each flanked by an SSDP dimer. The symmetry and multivalency of ChiLS underpin its function as an enhancer module integrating Wnt signals with lineage-specific factors to operate context-dependent transcriptional switches that are pivotal for normal development and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo , Complexos Multiproteicos/química , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Humanos , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/genética , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Wnt/genética
12.
Nature ; 569(7755): 265-269, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043738

RESUMO

An important component of cellular biochemistry is the concentration of proteins and nucleic acids in non-membranous compartments1,2. These biomolecular condensates are formed from processes that include liquid-liquid phase separation. The multivalent interactions necessary for liquid-liquid phase separation have been extensively studied in vitro1,3. However, the regulation of this process in vivo is poorly understood. Here we identify an in vivo regulator of liquid-liquid phase separation through a genetic screen targeting factors required for Arabidopsis RNA-binding protein FCA function. FCA contains prion-like domains that phase-separate in vitro, and exhibits behaviour in vivo that is consistent with phase separation. The mutant screen identified a functional requirement for FLL2, a coiled-coil protein, in the formation of FCA nuclear bodies. FCA reduces transcriptional read-through by promoting proximal polyadenylation at many sites in the Arabidopsis genome3,4. FLL2 was required to promote this proximal polyadenylation, but not the binding of FCA to target RNA. Ectopic expression of FLL2 increased the size and number of FCA nuclear bodies. Crosslinking with formaldehyde captured in vivo interactions between FLL2, FCA and the polymerase and nuclease modules of the RNA 3'-end processing machinery. These 3' RNA-processing components colocalized with FCA in the nuclear bodies in vivo, which indicates that FCA nuclear bodies compartmentalize 3'-end processing factors to enhance polyadenylation at specific sites. Our findings show that coiled-coil proteins can promote liquid-liquid phase separation, which expands our understanding of the principles that govern the in vivo dynamics of liquid-like bodies.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Poliadenilação , Proteínas de Arabidopsis/genética , Fluoresceína , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/metabolismo
13.
Elife ; 62017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28296634

RESUMO

Wnt/ß-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF-responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing ß-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of ß-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these ß-catenin co-factors may coordinate Wnt and nuclear hormone responses.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Edição de Genes , Humanos , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Recombinação Genética , Fatores de Transcrição , Via de Sinalização Wnt
15.
Elife ; 42015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26312500

RESUMO

TCF/LEF factors are ancient context-dependent enhancer-binding proteins that are activated by ß-catenin following Wnt signaling. They control embryonic development and adult stem cell compartments, and their dysregulation often causes cancer. ß-catenin-dependent transcription relies on the NPF motif of Pygo proteins. Here, we use a proteomics approach to discover the Chip/LDB-SSDP (ChiLS) complex as the ligand specifically binding to NPF. ChiLS also recognizes NPF motifs in other nuclear factors including Runt/RUNX2 and Drosophila ARID1, and binds to Groucho/TLE. Studies of Wnt-responsive dTCF enhancers in the Drosophila embryonic midgut indicate how these factors interact to form the Wnt enhanceosome, primed for Wnt responses by Pygo. Together with previous evidence, our study indicates that ChiLS confers context-dependence on TCF/LEF by integrating multiple inputs from lineage and signal-responsive factors, including enhanceosome switch-off by Notch. Its pivotal function in embryos and stem cells explain why its integrity is crucial in the avoidance of cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Ligação Proteica , Proteômica
16.
Nat Commun ; 6: 6718, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25907794

RESUMO

Dishevelled relays Wnt signals from the plasma membrane to different cytoplasmic effectors. Its signalling activity depends on its DIX domain, which undergoes head-to-tail polymerization to assemble signalosomes. The DIX domain is ubiquitinated in vivo at multiple lysines, which can be antagonized by various deubiquitinases (DUBs) including the CYLD tumour suppressor that attenuates Wnt signalling. Here, we generate milligram quantities of pure human Dvl2 DIX domain mono-ubiquitinated at two lysines (K54 and K58) by genetically encoded orthogonal protection with activated ligation (GOPAL), to investigate their effect on DIX polymerization. We show that the ubiquitination of DIX at K54 blocks its polymerization in solution, whereas DIX58-Ub remains oligomerization-competent. DUB profiling identified 28 DUBs that cleave DIX-ubiquitin conjugates, half of which prefer, or are specific for, DIX54-Ub, including Cezanne and CYLD. These DUBs thus have the potential to promote Dvl polymerization and signalosome formation, rather than antagonize it as previously thought for CYLD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lisina/metabolismo , Fosfoproteínas/metabolismo , Polimerização , Ubiquitinação , Via de Sinalização Wnt , Motivos de Aminoácidos , Cromatografia Líquida , Proteínas Desgrenhadas , Escherichia coli , Humanos , Espectrometria de Massas , Organismos Geneticamente Modificados , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Proteínas Supressoras de Tumor
17.
ACS Chem Biol ; 9(12): 2864-74, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25323450

RESUMO

The Pygo-BCL9 complex is a chromatin reader, facilitating ß-catenin-mediated oncogenesis, and is thus emerging as a potential therapeutic target for cancer. Its function relies on two ligand-binding surfaces of Pygo's PHD finger that anchor the histone H3 tail methylated at lysine 4 (H3K4me) with assistance from the BCL9 HD1 domain. Here, we report the first use of fragment-based screening by NMR to identify small molecules that block protein-protein interactions by a PHD finger. This led to the discovery of a set of benzothiazoles that bind to a cleft emanating from the PHD-HD1 interface, as defined by X-ray crystallography. Furthermore, we discovered a benzimidazole that docks into the H3K4me specificity pocket and displaces the native H3K4me peptide from the PHD finger. Our study demonstrates the ligandability of the Pygo-BCL9 complex and uncovers a privileged scaffold as a template for future development of lead inhibitors of oncogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Antineoplásicos/química , Benzimidazóis/química , Benzotiazóis/química , Histonas/química , Proteínas de Neoplasias/química , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Ligação Competitiva , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Descoberta de Drogas , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição
18.
Structure ; 21(12): 2208-20, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24183574

RESUMO

Pygo proteins promote Armadillo- and ß-catenin-dependent transcription, by relieving Groucho-dependent repression of Wnt targets. Their PHD fingers bind histone H3 tail methylated at lysine 4, and to the HD1 domain of their Legless/BCL9 cofactors, linking Pygo to Armadillo/ß-catenin. Intriguingly, fly Pygo orthologs exhibit a tryptophan > phenylalanine substitution in their histone pocket-divider which reduces their affinity for histones. Here, we use X-ray crystallography and NMR, to discover a conspicuous groove bordering this phenylalanine in the Drosophila PHD-HD1 complex--a semi-aromatic cage recognizing asymmetrically methylated arginine 2 (R2me2a), a chromatin mark of silenced genes. Our structural model of the ternary complex reveals a distinct mode of dimethylarginine recognition, involving a polar interaction between R2me2a and its groove, the structural integrity of which is crucial for normal tissue patterning. Notably, humanized fly Pygo derepresses Notch targets, implying an inherent Notch-related function of classical Pygo orthologs, disabled in fly Pygo, which thus appears dedicated to Wnt signaling.


Assuntos
Arginina/análogos & derivados , Proteínas de Drosophila/química , Drosophila/metabolismo , Histonas/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Regulação Alostérica , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Arginina/química , Cristalografia por Raios X , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo
19.
Proc Natl Acad Sci U S A ; 108(5): 1937-42, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245303

RESUMO

Wnt/ß-catenin signaling controls numerous steps in normal animal development and can also cause cancer if inappropriately activated. In the absence of Wnt, ß-catenin is targeted continuously for proteasomal degradation by the Axin destruction complex, whose activity is blocked upon Wnt stimulation by Dishevelled, which recruits Axin to the plasma membrane and assembles it into a signalosome. This key event during Wnt signal transduction depends on dynamic head-to-tail polymerization by the DIX domain of Dishevelled. Here, we use rescue assays in Drosophila tissues and functional assays in human cells to show that polymerization-blocking mutations in the DIX domain of Axin disable its effector function in down-regulating Armadillo/ß-catenin and its response to Dishevelled during Wnt signaling. Intriguingly, NMR spectroscopy revealed that the purified DIX domains of the two proteins interact with each other directly through their polymerization interfaces, whereby the same residues mediate both homo- and heterotypic interactions. This result implies that Dishevelled has the potential to act as a "natural" dominant-negative, binding to the polymerization interface of Axin's DIX domain to interfere with its self-assembly, thereby blocking its effector function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biopolímeros/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Fosfoproteínas/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Proteína Axina , Proteínas Desgrenhadas , Drosophila , Proteínas de Drosophila/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Mutação Puntual , Ligação Proteica , Homologia de Sequência de Aminoácidos
20.
Mol Pharm ; 8(1): 65-77, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-20825215

RESUMO

Heterologous prime-boost immunization strategies in general establish higher frequencies of antigen-specific T lymphocytes than homologous prime-boost protocols or single immunizations. We developed virosomes and recombinant Semliki Forest virus (rSFV) as antigen delivery systems, each capable of inducing strong CTL responses in homologous prime-boost protocols. Here, we demonstrate that a heterologous prime-boost with recombinant Semliki Forest virus (rSFV) encoding a fusion protein of E6 and E7 of human papillomavirus (HPV) type 16 and virosomes containing the HPV16 E7 protein resulted in higher numbers of antigen-specific CTL in mice than homologous protocols. Evasion of vector-specific immunity appeared to play a role in establishing these high frequencies, as coinduction of vector-specific responses during the prime immunization reduced the frequency of antigen-specific CTL after a heterologous booster. However, the high numbers of CTL initially primed by the heterologous protocols did not correlate with enhanced responsiveness to in vitro antigenic stimulation, nor in improved cytolytic activity or antitumor responses in vivo compared to a homologous protocol with rSFV. This lack of correlation could not be explained by changes in numbers of regulatory T cells. However, we observed differences in the frequencies of T cell subsets within the E7-specific CD8(+) T cell population, e.g. higher frequencies of central memory T cells upon homologous immunizations compared to heterologous immunizations. The induction of central memory T cells is crucial for a cancer vaccine as these cells are known to rapidly expand upon recall stimulation. This study demonstrates that the strongly increased number of antigen-specific CTL as induced by heterologous prime-boost immunizations, often used as a proof for the enhanced efficacy of such regimes, does not necessarily equal superior functional antitumor responses.


Assuntos
Alphavirus/imunologia , Replicon/imunologia , Virossomos/imunologia , Animais , Linhagem Celular , Cricetinae , Feminino , Citometria de Fluxo , Camundongos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/metabolismo , Replicon/genética , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Vírus da Floresta de Semliki/imunologia , Linfócitos T Citotóxicos/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA