Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 489, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718544

RESUMO

BACKGROUND: Grass pea (Lathyrus sativus) is an underutilised crop with high tolerance to drought and flooding stress and potential for maintaining food and nutritional security in the face of climate change. The presence of the neurotoxin ß-L-oxalyl-2,3-diaminopropionic acid (ß-L-ODAP) in tissues of the plant has limited its adoption as a staple crop. To assist in the detection of material with very low neurotoxin toxin levels, we have developed two novel methods to assay ODAP. The first, a version of a widely used spectrophotometric assay, modified for increased throughput, permits rapid screening of large populations of germplasm for low toxin lines and the second is a novel, mass spectrometric procedure to detect very small quantities of ODAP for research purposes and characterisation of new varieties. RESULTS: A plate assay, based on an established spectrophotometric method enabling high-throughput ODAP measurements, is described. In addition, we describe a novel liquid chromatography mass spectrometry (LCMS)-based method for ß-L-ODAP-quantification. This method utilises an internal standard (di-13C-labelled ß-L-ODAP) allowing accurate quantification of ß-L-ODAP in grass pea tissue samples. The synthesis of this standard is also described. The two methods are compared; the spectrophotometric assay lacked sensitivity and detected ODAP-like absorbance in chickpea and pea whereas the LCMS method did not detect any ß-L-ODAP in these species. The LCMS method was also used to quantify ß-L-ODAP accurately in different tissues of grass pea. CONCLUSIONS: The plate-based spectrophotometric assay allows quantification of total ODAP in large numbers of samples, but its low sensitivity and inability to differentiate α- and ß-L-ODAP limit its usefulness for accurate quantification in low-ODAP samples. Coupled to the use of a stable isotope internal standard with LCMS that allows accurate quantification of ß-L-ODAP in grass pea samples with high sensitivity, these methods permit the identification and characterisation of grass pea lines with a very low ODAP content. The LCMS method is offered as a new 'gold standard' for ß-L-ODAP quantification, especially for the validation of existing and novel low- and/or zero-ß-L-ODAP genotypes.


Assuntos
Diamino Aminoácidos/análise , Lathyrus/química , Neurotoxinas/análise , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Custos e Análise de Custo , Marcação por Isótopo , Lathyrus/genética , Espectrometria de Massas/economia , Espectrometria de Massas/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria/economia , Espectrofotometria/métodos , Fatores de Tempo
2.
Nat Sustain ; 1(9): 477-485, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30450426

RESUMO

How we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics underestimate the overall impacts of lower-yield systems, so here we develop a framework that instead compares externality and land costs per unit production. Applying this to diverse datasets describing the externalities of four major farm sectors reveals that, rather than involving trade-offs, the externality and land costs of alternative production systems can co-vary positively: per unit production, land-efficient systems often produce lower externalities. For GHG emissions these associations become more strongly positive once forgone sequestration is included. Our conclusions are limited: remarkably few studies report externalities alongside yields; many important externalities and farming systems are inadequately measured; and realising the environmental benefits of high-yield systems typically requires additional measures to limit farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics are not as ubiquitous as sometimes perceived.

4.
New Phytol ; 208(1): 13-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26171760

RESUMO

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.


Assuntos
Clonagem Molecular/métodos , DNA , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Plantas/genética , Biologia Sintética/métodos , Botânica , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Eucariotos/genética , Engenharia Genética/normas , Plasmídeos , Padrões de Referência , Transcrição Gênica
5.
PLoS One ; 10(3): e0121010, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25894293

RESUMO

Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Ecossistema , Minerais/isolamento & purificação , Agricultura/métodos , Animais , Mudança Climática , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Ingestão de Alimentos , Inglaterra , Inundações/estatística & dados numéricos , Gado/fisiologia , Recreação , Fatores de Tempo
6.
Ecol Evol ; 4(20): 3875-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25505517

RESUMO

Restoration of degraded land is recognized by the international community as an important way of enhancing both biodiversity and ecosystem services, but more information is needed about its costs and benefits. In Cambridgeshire, U.K., a long-term initiative to convert drained, intensively farmed arable land to a wetland habitat mosaic is driven by a desire both to prevent biodiversity loss from the nationally important Wicken Fen National Nature Reserve (Wicken Fen NNR) and to increase the provision of ecosystem services. We evaluated the changes in ecosystem service delivery resulting from this land conversion, using a new Toolkit for Ecosystem Service Site-based Assessment (TESSA) to estimate biophysical and monetary values of ecosystem services provided by the restored wetland mosaic compared with the former arable land. Overall results suggest that restoration is associated with a net gain to society as a whole of $199 ha(-1)y(-1), for a one-off investment in restoration of $2320 ha(-1). Restoration has led to an estimated loss of arable production of $2040 ha(-1)y(-1), but estimated gains of $671 ha(-1)y(-1) in nature-based recreation, $120 ha(-1)y(-1) from grazing, $48 ha(-1)y(-1) from flood protection, and a reduction in greenhouse gas (GHG) emissions worth an estimated $72 ha(-1)y(-1). Management costs have also declined by an estimated $1325 ha(-1)y(-1). Despite uncertainties associated with all measured values and the conservative assumptions used, we conclude that there was a substantial gain to society as a whole from this land-use conversion. The beneficiaries also changed from local arable farmers under arable production to graziers, countryside users from towns and villages, and the global community, under restoration. We emphasize that the values reported here are not necessarily transferable to other sites.

7.
J Biol Chem ; 287(47): 39429-38, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22988248

RESUMO

Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.


Assuntos
Parede Celular , Análise em Microsséries , Plantas , Polissacarídeos , Parede Celular/química , Parede Celular/metabolismo , Análise em Microsséries/instrumentação , Análise em Microsséries/métodos , Plantas/química , Plantas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA