Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695965

RESUMO

Effective ocean management requires integrated and sustainable ocean observing systems enabling us to map and understand ecosystem properties and the effects of human activities. Autonomous subsurface and surface vehicles, here collectively referred to as "gliders", are part of such ocean observing systems providing high spatiotemporal resolution. In this paper, we present some of the results achieved through the project "Unmanned ocean vehicles, a flexible and cost-efficient offshore monitoring and data management approach-GLIDER". In this project, three autonomous surface and underwater vehicles were deployed along the Lofoten-Vesterålen (LoVe) shelf-slope-oceanic system, in Arctic Norway. The aim of this effort was to test whether gliders equipped with novel sensors could effectively perform ecosystem surveys by recording physical, biogeochemical, and biological data simultaneously. From March to September 2018, a period of high biological activity in the area, the gliders were able to record a set of environmental parameters, including temperature, salinity, and oxygen, map the spatiotemporal distribution of zooplankton, and record cetacean vocalizations and anthropogenic noise. A subset of these parameters was effectively employed in near-real-time data assimilative ocean circulation models, improving their local predictive skills. The results presented here demonstrate that autonomous gliders can be effective long-term, remote, noninvasive ecosystem monitoring and research platforms capable of operating in high-latitude marine ecosystems. Accordingly, these platforms can record high-quality baseline environmental data in areas where extractive activities are planned and provide much-needed information for operational and management purposes.


Assuntos
Ecossistema , Salinidade , Humanos , Oceanos e Mares
2.
Nature ; 565(7737): 73-77, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602750

RESUMO

Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth's methane budget.

3.
Proc Biol Sci ; 284(1855)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28539518

RESUMO

Large and productive fisheries occur in regions experiencing or projected to experience ocean acidification. Anchoveta (Engraulis ringens) constitute the world's largest single-species fishery and live in one of the ocean's highest pCO2 regions. We investigated the relationship of the distribution and abundance of Anchoveta eggs and larvae to natural gradients in pCO2 in the Peruvian upwelling system. Eggs and larvae, zooplankton, and data on temperature, salinity, chlorophyll a and pCO2 were collected during a cruise off Peru in 2013. pCO2 ranged from 167-1392 µatm and explained variability in egg presence, an index of spawning habitat. Zooplankton abundance explained variability in the abundance of small larvae. Within the main spawning and larva habitats (6-10°S), eggs were found in cool, low-salinity, and both extremely low (less than 200 µatm) and high (more than 900 µatm) pCO2 waters, and larvae were collected in warmer, higher salinity, and moderate (400-600 µatm) pCO2 waters. Our data support the hypothesis that Anchoveta preferentially spawned at high pCO2 and these eggs had lower survival. Enhanced understanding of the influence of pCO2 on Anchoveta spawning and larva mortality, together with pCO2 measurements, may enable predictions of ocean acidification effects on Anchoveta and inform adaptive fisheries management.


Assuntos
Dióxido de Carbono/análise , Peixes , Larva , Óvulo , Água do Mar/química , Animais , Clorofila/análise , Clorofila A , Ecossistema , Oceano Pacífico , Peru , Análise Espacial
4.
Environ Sci Technol ; 50(21): 11680-11687, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696829

RESUMO

Methane (CH4) emissions from small rivers and streams, particularly via ebullition, are currently under-represented in the literature. Here, we quantify the methane effluxes and drivers in a small, Northern European river. Methane fluxes are comparable to those from tropical aquatic systems, with average emissions of 320 mg CH4 m-2 d-1. Two important drivers of methane flux variations were identified in the studied system: 1) temperature-driven sediment methane ebullition and 2) flow-dependent contribution suspected to be hydraulic exchange with adjacent wetlands and small side-bays. This flow-dependent contribution to river methane loading is shown to be negligible for flows less than 4 m3 s-1 and greater than 50% as flows exceed 7 m3 s-1. While the temperature-ebullition relationship is comparable to other systems, the flow rate dependency has not been previously demonstrated. In general, we found that about 80% of the total emissions were due to methane bubbles. Applying ebullition rates to global estimates for fluvial systems, which currently are not considered, could dramatically increase emission rates to ranges from lakes or wetlands. This work illustrates that small rivers can emit significant methane and highlights the need for further studies on the link between hydrodynamics and connected wetlands.


Assuntos
Metano , Rios , Hidrodinâmica , Lagos , Temperatura
5.
Environ Sci Technol ; 47(15): 8130-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23799866

RESUMO

Inland waters transport and transform substantial amounts of carbon and account for ∼18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (∼0.23 mmol CH4 m(-2) d(-1) vs ∼19.7 mmol CH4 m(-2) d(-1), respectively) and that areal emission rates far exceed previous estimates for temperate reservoirs or rivers. We show that sediment accumulation correlates with methane production and subsequent ebullitive release rates and may therefore be an excellent proxy for estimating methane emissions from small reservoirs. Our results suggest that sedimentation-driven methane emissions from dammed river hot spot sites can potentially increase global freshwater emissions by up to 7%.


Assuntos
Sedimentos Geológicos , Metano/análise , Poluentes Químicos da Água/análise , Europa (Continente) , Água Doce , Rios , Estações do Ano
6.
PLoS One ; 8(4): e62689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626849

RESUMO

The impact of ocean acidification on benthic habitats is a major preoccupation of the scientific community. However, the natural variability of pCO2 and pH in those habitats remains understudied, especially in temperate areas. In this study we investigated temporal variations of the carbonate system in nearshore macrophyte meadows of the western Baltic Sea. These are key benthic ecosystems, providing spawning and nursery areas as well as food to numerous commercially important species. In situ pCO2, pH (total scale), salinity and PAR irradiance were measured with a continuous recording sensor package dropped in a shallow macrophyte meadow (Eckernförde bay, western Baltic Sea) during three different weeks in July (pCO2 and PAR only), August and September 2011.The mean (± SD) pCO2 in July was 383±117 µatm. The mean (± SD) pCO2 and pH(tot) in August were 239±20 µatm and 8.22±0.1, respectively. The mean (± SD) pCO2 and pH(tot) in September were 1082±711 µatm and 7.83±0.40, respectively. Daily variations of pCO2 due to photosynthesis and respiration (difference between daily maximum and minimum) were of the same order of magnitude: 281±88 µatm, 219±89 µatm and 1488±574 µatm in July, August and September respectively. The observed variations of pCO2 were explained through a statistical model considering wind direction and speed together with PAR irradiance. At a time scale of days to weeks, local upwelling of elevated pCO2 water masses with offshore winds drives the variation. Within days, primary production is responsible. The results demonstrate the high variability of the carbonate system in nearshore macrophyte meadows depending on meteorology and biological activities. We highlight the need to incorporate these variations in future pCO2 scenarios and experimental designs for nearshore habitats.


Assuntos
Dióxido de Carbono/química , Concentração de Íons de Hidrogênio , Fotossíntese , Estações do Ano , Água do Mar/química , Carbonatos/química , Ecossistema , Alemanha , Modelos Teóricos , Oceanografia , Oceanos e Mares , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA