Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 12: 683026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220831

RESUMO

Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.


Assuntos
Microglia/citologia , Animais , Biomarcadores , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Forma Celular , Quirópteros , Cognição , Metabolismo Energético , Meio Ambiente , Homeostase , Humanos , Camundongos , Microglia/fisiologia , Tamanho do Órgão , Filogenia , Desempenho Psicomotor , Especificidade da Espécie
2.
Front Pharmacol ; 11: 840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595498

RESUMO

Fish use spatial cognition based on allocentric cues to navigate, but little is known about how environmental enrichment (EE) affects learning and memory in correlation with hematological changes or gene expression in the fish brain. Here we investigated these questions in Colossoma macropomum (Teleostei). Fish were housed for 192 days in either EE or in an impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-h/day water stream for voluntary exercise, whereas IE had no toys, plants, or water stream. A third plus maze aquarium was used for spatial and object recognition tests. Compared with IE, the EE fish showed greater learning rates, body length, and body weight. After behavioral tests, whole brain tissue was taken, stored in RNA-later, and then homogenized for DNA sequencing after conversion of isolated RNA. To compare read mapping and gene expression profiles across libraries for neurotranscriptome differential expression, we mapped back RNA-seq reads to the C. macropomum de novo assembled transcriptome. The results showed significant differential behavior, cell counts and gene expression in EE and IE individuals. As compared with IE, we found a greater number of cells in the telencephalon of individuals maintained in EE but no significant difference in the tectum opticum, suggesting differential plasticity in these areas. A total of 107,669 transcripts were found that ultimately yielded 64 differentially expressed transcripts between IE and EE brains. Another group of adult fish growing in aquaculture conditions were either subjected to exercise using running water flow or maintained sedentary. Flow cytometry analysis of peripheral blood showed a significantly higher density of lymphocytes, and platelets but no significant differences in erythrocytes and granulocytes. Thus, under the influence of contrasting environments, our findings showed differential changes at the behavioral, cellular, and molecular levels. We propose that the differential expression of selected transcripts, number of telencephalic cell counts, learning and memory performance, and selective hematological cell changes may be part of Teleostei adaptive physiological responses triggered by EE visuospatial and somatomotor stimulation. Our findings suggest abundant differential gene expression changes depending on environment and provide a basis for exploring gene regulation mechanisms under EE in C. macropomum.

3.
Neuropathology ; 36(1): 3-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26303046

RESUMO

Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important.


Assuntos
Sistema Nervoso Central/patologia , Dengue/patologia , Inflamação/patologia , Animais , Anticorpos Antivirais/toxicidade , Barreira Hematoencefálica/patologia , Callithrix , Vírus da Dengue/imunologia , Hipocampo/patologia , Imuno-Histoquímica , Microglia/patologia , Fator de Necrose Tumoral alfa/metabolismo
4.
J Chem Neuroanat ; 40(2): 148-59, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20558278

RESUMO

Behavioral, electrophysiological, and anatomical assays of non-human primates have provided substantial evidence that the hippocampus and dentate gyrus are essential for memory consolidation. However, a single anatomical and stereological investigation of these regions has been done in New World primates to complement those assays. The aim of the present study was to describe the cyto-, myelo-, and histochemical architecture of the hippocampus and dentate gyrus, and to use the optical fractionator method to estimate the number of neurons in the hippocampal pyramidal and granular neurons in the dentate gyrus of the Cebus monkey. NeuN immunolabeling, lectin histochemical staining with Wisteria floribunda agglutinin (WFA), enzyme-histochemical detection of NADPH-diaphorase activity and Gallyas silver staining were used to define the layers and limits of the hippocampal fields and dentate gyrus. A comparative analysis of capuchin (Cebus apella) and Rhesus (Macaca mulatta) monkeys revealed similar structural organization of these regions but significant differences in the regional distribution of neurons. C. apella were found to have 1.3 times fewer pyramidal and 3.5 times fewer granular neurons than M. mulatta. Taken together the architectonic and stereological data of the present study suggest that hippocampal and dentate gyrus neural networks in the C. apella and M. mulatta may contribute to hippocampal-dentate gyrus-dependent tasks in different proportions.


Assuntos
Cebus/anatomia & histologia , Hipocampo/anatomia & histologia , Neurônios/citologia , Animais , Macaca mulatta/anatomia & histologia , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA