Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochem J ; 479(13): 1409-1428, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35722941

RESUMO

Myosin VI is the only minus-end actin motor and it is coupled to various cellular processes ranging from endocytosis to transcription. This multi-potent nature is achieved through alternative isoform splicing and interactions with a network of binding partners. There is a complex interplay between isoforms and binding partners to regulate myosin VI. Here, we have compared the regulation of two myosin VI splice isoforms by two different binding partners. By combining biochemical and single-molecule approaches, we propose that myosin VI regulation follows a generic mechanism, independently of the spliced isoform and the binding partner involved. We describe how myosin VI adopts an autoinhibited backfolded state which is released by binding partners. This unfolding activates the motor, enhances actin binding and can subsequently trigger dimerization. We have further expanded our study by using single-molecule imaging to investigate the impact of binding partners upon myosin VI molecular organization and dynamics.


Assuntos
Actinas , Cadeias Pesadas de Miosina , Actinas/metabolismo , Endocitose , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética
2.
Nat Commun ; 13(1): 1346, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292632

RESUMO

During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.


Assuntos
Cadeias Pesadas de Miosina , RNA Polimerase II , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mamíferos/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
4.
Rev Alerg Mex ; 68 Suppl 2: s1-s22, 2021.
Artigo em Espanhol | MEDLINE | ID: mdl-34371527

RESUMO

OBJECTIVES: Hereditary angioedema (HAE) is a rare disease. During the last years, many studies and advances have been developed with the aim of better understanding the pathophysiology, as well as optimizing patient management. Several international working groups have attempted to clarify and standardize the care of HAE communicated as guidelines and consensus recommendations. We considered necessary to provide recommendations for the diagnosis and treatment of patients with HAE in Argentina. METHODS: A group of specialists of allergy and immunology from Argentina by using the online surveys methodology as well as face to face meetings developed the intended consensus. RESULTS: Recommendations were established based on published evidence and the expert opinion. The consensus focused on diagnosis, acute management of attacks, short and long-term prophylaxis, special situations (pediatrics and pregnancy) and disease management considering the health care system in Argentina. CONCLUSION: The recommendations established in this consensus guidelines will optimize the management of patients with HAE in Argentina.


Objetivos: El angioedema hereditario es una enfermedad poco frecuente. Durante los últimos años se han desarrollado muchas investigaciones y registrado avances con el objetivo de entender mejor la fisiopatología y optimizar la atención a los pacientes. Diversos grupos de trabajo internacionales han intentado clarificar y normalizar el cuidado de pacientes con angioedema hereditario, lo que se ha reflejado en guías y consensos. Consideramos necesario desarrollar un documento de consenso con recomendaciones para el diagnóstico y tratamiento del angioedema hereditario en Argentina. Metodología: Un grupo de expertos de Argentina, conformado por especialistas en Alergia e Inmunología mediante metodología de ronda de encuestas a distancia y reuniones presenciales llevó adelante la elaboración del consenso pretendido. Resultados: Se establecieron recomendaciones basadas en la evidencia publicada y en el criterio de los expertos participantes. Las recomendaciones se enfocaron en el diagnóstico, tratamiento y profilaxis de las crisis a corto y largo plazo, control de situaciones especiales y consideraciones del sistema de salud en Argentina. Conclusión: Las recomendaciones establecidas en este consenso permitirán optimizar la atención médica de los pacientes con angioedema hereditario en Argentina.


Assuntos
Angioedemas Hereditários , Algoritmos , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/terapia , Argentina , Criança , Feminino , Humanos , Gravidez , Inquéritos e Questionários
5.
Biomolecules ; 11(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672015

RESUMO

Mammalian cells are constantly subjected to a variety of DNA damaging events that lead to the activation of DNA repair pathways. Understanding the molecular mechanisms of the DNA damage response allows the development of therapeutics which target elements of these pathways. Double-strand breaks (DSB) are particularly deleterious to cell viability and genome stability. Typically, DSB repair is studied using DNA damaging agents such as ionising irradiation or genotoxic drugs. These induce random lesions at non-predictive genome sites, where damage dosage is difficult to control. Such interventions are unsuitable for studying how different DNA damage recognition and repair pathways are invoked at specific DSB sites in relation to the local chromatin state. The RNA-guided Cas9 (CRISPR-associated protein 9) endonuclease enzyme is a powerful tool to mediate targeted genome alterations. Cas9-based genomic intervention is attained through DSB formation in the genomic area of interest. Here, we have harnessed the power to induce DSBs at defined quantities and locations across the human genome, using custom-designed promiscuous guide RNAs, based on in silico predictions. This was achieved using electroporation of recombinant Cas9-guide complex, which provides a generic, low-cost and rapid methodology for inducing controlled DNA damage in cell culture models.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Sobrevivência Celular , Cisplatino/farmacologia , Simulação por Computador , Reparo do DNA , Eletroporação , Endonucleases/genética , Escherichia coli/metabolismo , Edição de Genes/métodos , Genoma Humano , Instabilidade Genômica , Genômica , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Mutagênicos , RNA Guia de Cinetoplastídeos , Processos Estocásticos
6.
Biophys J ; 120(4): 631-641, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33453266

RESUMO

Mechanobiology is focused on how the physical forces and mechanical properties of proteins, cells, and tissues contribute to physiology and disease. Although the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single-molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. We demonstrate the broad applicability and versatility through in vitro and in cellulo approaches. Overall, our methodology allows, for the first time (to our knowledge), ensemble biochemical and cell-based assays to be performed under force in high-throughput format. This approach substantially increases the availability of mechanobiology measurements.


Assuntos
Magnetismo , Fenômenos Mecânicos , Biofísica , Imãs , Nanotecnologia
8.
J Biol Chem ; 295(2): 337-347, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31744880

RESUMO

Myosin VI is involved in many cellular processes ranging from endocytosis to transcription. This multifunctional potential is achieved through alternative isoform splicing and through interactions of myosin VI with a diverse network of binding partners. However, the interplay between these two modes of regulation remains unexplored. To this end, we compared two different binding partners and their interactions with myosin VI by exploring the kinetic properties of recombinant proteins and their distribution in mammalian cells using fluorescence imaging. We found that selectivity for these binding partners is achieved through a high-affinity motif and a low-affinity motif within myosin VI. These two motifs allow competition among partners for myosin VI. Exploring how this competition affects the activity of nuclear myosin VI, we demonstrate the impact of a concentration-driven interaction with the low-affinity binding partner DAB2, finding that this interaction blocks the ability of nuclear myosin VI to bind DNA and its transcriptional activity in vitro We conclude that loss of DAB2, a tumor suppressor, may enhance myosin VI-mediated transcription. We propose that the frequent loss of specific myosin VI partner proteins during the onset of cancer leads to a higher level of nuclear myosin VI activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Reguladoras de Apoptose/análise , Sítios de Ligação , Núcleo Celular/metabolismo , Células HeLa , Humanos , Células MCF-7 , Cadeias Pesadas de Miosina/análise , Ligação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica
9.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861842

RESUMO

Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.


Assuntos
Processamento Alternativo , Miosinas/metabolismo , Mapas de Interação de Proteínas , Actinas/análise , Actinas/metabolismo , Animais , Humanos , Miosinas/análise , Fosfolipídeos/metabolismo , Fosforilação , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Multimerização Proteica
10.
Nat Commun ; 8(1): 1871, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29187741

RESUMO

Myosin VI (MVI) has been found to be overexpressed in ovarian, breast and prostate cancers. Moreover, it has been shown to play a role in regulating cell proliferation and migration, and to interact with RNA Polymerase II (RNAPII). Here, we find that backfolding of MVI regulates its ability to bind DNA and that a putative transcription co-activator NDP52 relieves the auto-inhibition of MVI to enable DNA binding. Additionally, we show that the MVI-NDP52 complex binds RNAPII, which is critical for transcription, and that depletion of NDP52 or MVI reduces steady-state mRNA levels. Lastly, we demonstrate that MVI directly interacts with nuclear receptors to drive expression of target genes, thereby suggesting a link to cell proliferation and migration. Overall, we suggest MVI may function as an auxiliary motor to drive transcription.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de Proteína , RNA Polimerase II/genética , Animais , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Células MCF-7 , Células Sf9 , Spodoptera , Transcrição Gênica , Ativação Transcricional
11.
Sci Rep ; 7(1): 8116, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808261

RESUMO

During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.


Assuntos
Núcleo Celular/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/fisiologia , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Mamíferos/fisiologia , Microscopia de Força Atômica/métodos , Reologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia
12.
Exp Suppl ; 105: 1-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25095988

RESUMO

This chapter provides an overview of fluorescent labelling of different reactants related to the biochemistry of motor proteins. The fluorescent properties of different labels and the advantages and disadvantages of the labelling methods are discussed. This will allow for a careful selection of fluorescent proteins for different applications relating to motor proteins.


Assuntos
Corantes Fluorescentes/metabolismo , Proteínas Motores Moleculares/metabolismo , Técnicas de Sonda Molecular , Imagem Óptica/métodos , Animais , Humanos , Medições Luminescentes , Proteínas Luminescentes/metabolismo , Ácidos Nucleicos/metabolismo , Pontos Quânticos
13.
Exp Suppl ; 105: 131-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25095994

RESUMO

Motor proteins are multi-potent molecular machines, whose localisation, function and regulation are achieved through tightly controlled processes involving conformational changes and interactions with their tracks, cargos and binding partners. Understanding how these complex machines work requires dissection of these processes both in space and time. Complementing the traditional ensemble measurements, single-molecule assays enable the detection of rare or short-lived intermediates and molecular heterogeneities, and the measurements of subpopulation dynamics. This chapter is focusing on the fluorescence imaging of single motors and their cargo. It discusses what is required in order to achieve single-molecule imaging with high temporal and spatial resolution and how these requirements are met both in vitro and in vivo. It also presents a general overview and applied examples of the major single-molecule imaging techniques and experimental assays which have been used to study motor proteins.


Assuntos
Corantes Fluorescentes/metabolismo , Proteínas Motores Moleculares/metabolismo , Técnicas de Sonda Molecular , Imagem Óptica/métodos , Animais , Humanos , Cinética , Proteínas Motores Moleculares/química , Movimento , Conformação Proteica , Transporte Proteico
14.
Nucleic Acids Res ; 41(9): 5010-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23535146

RESUMO

The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Plasmídeos/genética , Biotinilação , DNA de Cadeia Simples/metabolismo , Ácidos Nucleicos Imobilizados/metabolismo , Microscopia de Fluorescência , Multimerização Proteica , Transporte Proteico
15.
Methods Mol Biol ; 778: 193-214, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21809208

RESUMO

Almost all aspects of DNA metabolism involve separation of double-stranded DNA catalyzed by helicases. Observation and measurement of the dynamics of these events at the single-molecule level provide important mechanistic details of helicase activity and give the opportunity to probe aspects that are not revealed in bulk solution measurements. The assay, presented here, provides information about helicase unwinding rates and processivity. Visualization is achieved by using a fluorescent single-stranded DNA-binding protein (SSB), which allows the time course of individual DNA unwinding events to be observed using total internal reflection fluorescence microscopy. Observation of a prototypical helicase, Bacillus subtilis AddAB, shows that the unwinding process consists of bursts of unwinding activity, interspersed with periods of pausing.


Assuntos
DNA Helicases/metabolismo , Microscopia de Fluorescência/métodos , Bacillus subtilis/enzimologia , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA