Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Chem ; 16(5): 809-816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321236

RESUMO

Nanoporous materials have attracted great attention for gas storage, but achieving high volumetric storage capacity remains a challenge. Here, by using neutron powder diffraction, volumetric gas adsorption, inelastic neutron scattering and first-principles calculations, we investigate a magnesium borohydride framework that has small pores and a partially negatively charged non-flat interior for hydrogen and nitrogen uptake. Hydrogen and nitrogen occupy distinctly different adsorption sites in the pores, with very different limiting capacities of 2.33 H2 and 0.66 N2 per Mg(BH4)2. Molecular hydrogen is packed extremely densely, with about twice the density of liquid hydrogen (144 g H2 per litre of pore volume). We found a penta-dihydrogen cluster where H2 molecules in one position have rotational freedom, whereas H2 molecules in another position have a well-defined orientation and a directional interaction with the framework. This study reveals that densely packed hydrogen can be stabilized in small-pore materials at ambient pressures.

2.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220340, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691469

RESUMO

Amyloid fibrils have been associated with human disease for many decades, but it has also become apparent that they play a functional, non-disease-related role in e.g. bacteria and mammals. Moreover, they have been shown to possess interesting mechanical properties that can be harnessed for future man-made applications. Here, the mechanical behaviour of SSTSAA microcrystals has been investigated. The SSTSAA peptide organization in these microcrystals has been related to that in the corresponding amyloid fibrils. Using high-pressure X-ray diffraction experiments, the bulk modulus K, which is the reciprocal of the compressibility ß, has been calculated to be 2.48 GPa. This indicates that the fibrils are tightly packed, although the packing of most native globular proteins is even better. It is shown that the value of the bulk modulus is mainly determined by the compression along the c-axis, that relates to the inter-sheet distance in the fibrils. These findings corroborate earlier data obtained by AFM and molecular dynamics simulations that showed that mechanical resistance varies according to the direction of the applied strain, which can be related to packing and hydrogen bond contributions. Pressure experiments provide complementary information to these techniques and help to acquire a full mechanical characterization of biomolecular assemblies. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.


Assuntos
Amiloide , Compressão de Dados , Animais , Humanos , Difração de Raios X , Mamíferos
3.
Dalton Trans ; 52(8): 2404-2411, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723231

RESUMO

A highly complex crystal structure of stoichiometric Mg5(en)6(BH4)10 was solved from single crystal synchrotron X-ray diffraction and confirmed by neutron powder diffraction (NPD) on isotopically substituted Mg(en)1.2(11BD4)2. We highlight the role of the amorphous Mg(BH4)2 in the reactivity of the Mg(BH4)2-en system and characterized a previously overlooked phase, Mg(en)2(BH4)2.

4.
Inorg Chem ; 62(5): 2153-2160, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693191

RESUMO

Metal dodecaborates (MxB12H12) are a versatile class of materials used in polymer chemistry and cancer treatment and are promising candidates as electrolytes for solid-state batteries. However, a general and scalable approach has not yet been developed for producing high-purity B12H122- derivatives. In this work, we report a simple, efficient, and environmentally benign solvothermal method to prepare diffraction and 11B NMR pure Na2B12H12 (85% yield) and K2B12H12 (84% yield). This new synthetic approach is based on the use of the borane dimethyl sulfide complex (DMS·BH3) and borohydrides (NaBH4, KBH4) heated at different temperatures in diglyme in an autoclave. It was found that high-purity Na2B12H12·diglyme solvate is obtained via an intermediate formation of B3H8-, B9H14-, and B11H14-, which are all soluble in diglyme. Heating under vacuum is shown to be efficient for removing the coordinated diglyme, allowing the formation of unsolvated Na2B12H12. Autoclave synthesis starting from KBH4 directly yields solvent-free K2B12H12, and ball-milling KBH4 prior to the synthesis enabling us to significantly improve the final yield. The new synthetic method paves the way for large-scale synthesis of MxB12H12 derivatives, enabling to envisage a wider scope of practical applications.

5.
Inorg Chem ; 61(32): 12708-12718, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917192

RESUMO

A new type of hybrid compound, combining properties of MOFs and borohydrides, was synthesized solvothermally using Mg(BH4)2 and imidazole as precursors. Material in the form of acetonitrile solvate with formula [Mg3{(Im)BH2(Im)}6(ImH)6]·CH3CN crystallizes in the space group R3̅, having the unit cell parameters a = 15.1942(2) Å and c = 28.3157(3) Å as determined by single crystal X-ray diffraction. The structure was further investigated by solid-state NMR and DFT quantum chemical calculations. The main feature of the structure, reported here for the first time, is a linear trinuclear complex, where octahedrally nitrogen-coordinated Mg2+ ions are bridged with {(Im)BH2(Im)}- units, forming inside voids of 4.6 Å in diameter between the magnesium ions. Polar intermolecular interactions hold the molecules in a dense rhombohedral stacking, where a disordered acetonitrile molecule plays a cohesive role. The compound is stable in air and upon heating to about 160 °C. Using an alternative synthesis method from an imidazole melt, an imidazole solvate with the formula [Mg3{(Im)BH2(Im)}6(ImH)6]·ImH and a very similar crystal structure to acetonitrile solvate was prepared. It is stable up to 220 °C. Upon further heating, it transformed into a layered structure with the formula Mg(Im3BH)2, space group P3̅1c, and unit cell parameters a = 8.7338(9) Å and c = 17.621(2) Å determined by synchrotron powder diffraction. Besides its structural novelty, two types of potentially reactive hydrogens, bonded to boron and nitrogen in the same molecule, make the material highly interesting for future investigations in the fields of energy storage applications.

6.
J Mater Sci ; 57(25): 11563-11581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789923

RESUMO

This work describes temperature-induced crystallization processes and reaction mechanisms occurring in the borohydride-imidazolate system. In the course of thermal evolution, crystal structures of two novel bimetallic imidazolates AMnIm3 (A = Na, K) were solved using synchrotron radiation powder diffraction data. Both the alkali metal cation and the Mn cations exhibit distorted octahedral coordination while each imidazolate is surrounded by two alkali metal and two manganese atoms. Extensive study of the thermal expansion behaviour revealed that the expansion of the bimetallic imidazolates does not proceed uniformly over the entire temperature range but rather abruptly changes from a colossal negative to a moderate positive volume expansion. Such behaviour is caused by the coherent intergrowth of the coexisting phases which form a composite, a positive lattice mismatch and a tensile strain during the coexistence of NaMIm3 (M = Mg and Mn) and NaIm or HT-NaIm. Such coherent coalescence of two materials opens the possibility for targeted design of zero thermal expansion materials. Graphical abstract: Crystal structures of AMnIm3 (A = Na, K) were determined. Coherently intergrown NaMIm3/NaIm (M = Mg, Mn) present colossal negative thermal expansion. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07360-z.

7.
Inorg Chem ; 61(29): 11084-11094, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35817416

RESUMO

The first mesoporous bimetallic TiIII/Al metal-organic framework (MOF) containing amine functionalities on its linkers has been selectively obtained by converting the cheap commercially available (TiCl3)3AlCl3 into Ti3-xAlxCl3(THF)3 and reacting this complex with 2-aminoterephthalic acid in dimethylformamide (DMF) under soft solvothermal conditions. This compound is structurally related to the previously described NH2-MIL-101(M) (M = Cr, Al, and Fe) MOFs. Thermal gravimetric analyses and in situ powder X-ray diffraction (PXRD) measurements demonstrated that this highly air-sensitive TiIII-containing MOF is structurally stable up to 200 °C. Nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and inductively coupled plasma (ICP) revealed that NH2-MIL-101(TiIII) contains trinuclear Ti3(µ3-O)Cl(DMF)2(RCOO)6 clusters with strongly bound DMF molecules and a small amount of aluminum. Sorption experiments revealed a higher affinity of this MOF for hydrogen compared to the previously described monometallic unfunctionalized MIL-101(TiIII) MOF.

8.
Adv Sci (Weinh) ; 9(22): e2200924, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35619333

RESUMO

Sodium and iron make up the perfect combination for the growing demand for sustainable energy storage systems, given the natural abundance and sustainability of the two building block elements. However, most sodium-iron electrode chemistries are plagued by intrinsic low energy densities with continuous ongoing efforts to solve this. Herein, the chemical space of a series of (meta)stable, off-stoichiometric Fe-PO4 -F phases is analyzed. Some are found to display markedly improved electrochemical activity for sodium storage, as compared to the amorphous or thermodynamically stable phases of equivalent composition. The metastable crystalline Na1.2 Fe1.2 PO4 F0.6 delivers a reversible capacity of more than 140 mAh g-1 with an average discharge potential of 2.9 V (vs Na+ /Na0 ) resulting in a practical specific energy density of 400 Wh kg-1 (estimated at the material level), outperforming many developed Fe-PO4 analogs thus far, with further multiple possibilities to be explored toward improved energy storage metrics. Overall, this study unlocks the possibilities of off-stoichiometric Fe-PO4 -F cathode materials and reveals the importance to explore the oft-overlooked metastable or transient state materials for energy storage.

9.
Inorg Chem ; 60(21): 16666-16677, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652917

RESUMO

The metal sites of MIL-100(Fe), MIL-100(Fe,Al), and MIL-100(Al) metal-organic frameworks (MOFs) were decorated with ethylenediamine (EN). Interestingly, the Al-containing MOFs presented hierarchized porosity, and their structural integrity was maintained upon functionalization. Solution and solid-state NMR confirmed the grafting efficiency in the case of MIL-100(Al) and the presence of a free amine group. It was shown that MIL-100(Al) can be functionalized by only one EN molecule in each trimeric Al3O cluster unit, whereas the other two aluminum sites are occupied by a hydroxyl and a water molecule. The -NH2 sites of the grafted ethylenediamine can be used for further postfunctionalization through amine chemistry and are responsible for the basicity of the functionalized material as well as increased affinity for CO2. Furthermore, the presence of coordinated water molecules on the Al-MOF is responsible for simultaneous Brønsted acidity. Finally, the Al-containing MOFs show an unusual carbon dioxide sorption mechanism at high pressures that distinguishes those materials from their iron and chromium counterparts and is suspected to be due to the presence of polarized Al-OH bonds.

10.
Angew Chem Int Ed Engl ; 60(10): 5250-5256, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197112

RESUMO

Gas adsorption by porous frameworks sometimes results in structure "breathing", "pores opening/closing", "negative gas adsorption", and other phenomena. Time-dependent diffraction can address both kinetics of the guest uptake and structural response of the host framework. Using sub-second in situ powder X-ray diffraction, three intracrystalline diffusion scenarios have been evaluated from the isothermal kinetics of Ar, Kr, and Xe adsorption by nanoporous γ-Mg(BH4 )2 . These scenarios are dictated by two possible simultaneous transport mechanisms: diffusion through the intra- (i) and interchannel apertures (ii) of γ-Mg(BH4 )2 crystal structure. The contribution of (i) and (ii) changes depending on the kinetic diameter of the noble gas molecule and temperature regime. The lowest single activation barrier for the smallest Ar suggests equal diffusion of the atoms trough both pathways. Contrary, for the medium sized Kr we resolve the contributions of two parallel transport mechanisms, which tentatively can be attributed to the smaller barrier of the migration paths via the channel like pores and the higher barrier for the diffusion via narrow aperture between these channels. The largest Xe atoms diffuse only along 1D channels and show the highest single activation barrier.

11.
Food Chem ; 325: 126884, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32387949

RESUMO

Calcium l-lactate, an organic salt derived from l-lactic acid, is used in many fields such as food, pharmaceutical or cosmetic industry. To this date, its solid-state thermodynamics are still poorly understood: a pentahydrate crystalline and anhydrate amorphous forms were already characterized, and potential other hydrates mentioned in literature. For the development of a robust crystallization process or down-line handling of this compound, it is important to know and understand the relationship between the different solid forms to prevent uncontrolled crystallization or solid-solid transformation during storage. In this paper, we aimed at identifying and characterizing novel solid forms of calcium l-lactate. Combining analytical techniques, we confirmed the existence of the pentahydrate and an amorphous anhydrate. In addition, we played on temperature and relative humidity conditions to discover three new crystalline forms (a crystalline anhydrate, monohydrate and dihydrate). This paper is the first occasion where these forms were successfully isolated and characterized.

12.
ACS Appl Mater Interfaces ; 12(6): 7710-7716, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967778

RESUMO

Crystalline materials with pore dimensions comparable to the kinetic diameters of the guest molecules are attractive for their potential use in adsorption and separation applications. The nanoporous γ-Mg(BH4)2 features one-dimensional channels matching this criterion for Kr uptake, which has been probed using synchrotron powder diffraction at various pressures and temperatures. It results in two coexisting crystalline phases with the limiting composition Mg(BH4)2·0.66Kr expecting the highest Kr content (50.7 wt % in the crystalline phase) reported for porous materials. Quasi-equilibrium isobars built from Rietveld refinements of Kr site occupancies were rationalized with a noncooperative lattice gas model, yielding the values of the thermodynamic parameters. The latter were independently confirmed from Kr fluorescence. We have also parameterized the pronounced kinetic hysteresis with a modified mean-field model adopted for the Arrhenius kinetics.

13.
RSC Adv ; 10(34): 19822-19831, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520409

RESUMO

Metal-organic frameworks (MOFs) are recognized as ideal candidates for many applications such as gas sorption and catalysis. For a long time the properties of these materials were thought to essentially arise from their well-defined crystal structures. It is only recently that the importance of structural defects for the properties of MOFs has been evidenced. In this work, salt-assisted and liquid-assisted grinding were used to introduce defects in a copper-based MOF, namely HKUST-1. Different milling times and post-synthetic treatments with alcohols allow introduction of defects in the form of free carboxylic acid groups or reduced copper(i) sites. The nature and the amount of defects were evaluated by spectroscopic methods (FTIR, XPS) as well as TGA and NH3 temperature-programmed desorption experiments. The negative impact of free -COOH groups on the catalytic cyclopropanation reaction of ethyl diazoacetate with styrene, as well as on the gravimetric CO2 sorption capacities of the materials, was demonstrated. The improvement of the catalytic activity of carboxylic acid containing materials by the presence of CuI sites was also evidenced.

14.
J Am Chem Soc ; 141(43): 17207-17216, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31590484

RESUMO

Engineering the structural flexibility of metal-organic framework (MOF) materials for separation-related applications remains a great challenge. We present here a strategy of mixing rigid and soft linkers in a MOF structure to achieve tunable structural flexibility, as exemplified in a series of stable isostructural Zr-MOFs built with natural C4 linkers (fumaric acid, succinic acid, and malic acid). As shown by the differences in linker bond stretching and bending freedom, these MOFs display distinct responsive dynamics to external stimuli, namely, changes in temperature or guest molecule type. Comprehensive in situ characterizations reveal a clear correlation between linker character and MOF dynamic behavior, which leads to the discovery of a multivariate flexible MOF. It shows an optimal combination of both good working capacity and significantly enhanced selectivity for CO2/N2 separation. In principle, it provides a new avenue for potentially improving the ability of microporous MOFs to separate other gaseous and liquid mixtures.

15.
Materials (Basel) ; 12(17)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470536

RESUMO

This paper is a collection of selected contributions of the 1st International Workshop on Mechanochemistry of Metal Hydrides that was held in Oslo in May 2018. In this paper, the recent developments in the use of mechanochemistry to synthesize and modify metal hydrides are reviewed. A special emphasis is made on new techniques beside the traditional way of ball milling. High energy milling, ball milling under hydrogen reactive gas, cryomilling and severe plastic deformation techniques such as High-Pressure Torsion (HPT), Surface Mechanical Attrition Treatment (SMAT) and cold rolling are discussed. The new characterization method of in-situ X-ray diffraction during milling is described.

16.
J Am Chem Soc ; 141(27): 10595-10598, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251610

RESUMO

Electrides are ionic crystals in which the electrons prefer to occupy free space, serving as anions. Because the electrons prefer to be in the pockets, channels, or layers to the atomic orbitals around the nuclei, it has been challenging to find electrides with partially filled d-shell transition metals, since an unoccupied d-shell provides an energetically favorable location for the electrons to occupy. We recently predicted the existence of electrides with partially filled d-shells using high-throughput computational screening. Here, we provide experimental support using X-ray absorption spectroscopy and X-ray and neutron diffraction to show that Sr3CrN3 is indeed an electride despite its partial d-shell configuration. Our findings indicate that Sr3CrN3 is the first known electride with a partially filled d-shell transition metal, in agreement with theory, which significantly broadens the criteria for the search for new electride materials.

17.
Inorg Chem ; 58(10): 6927-6933, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31050419

RESUMO

The first bimetallic imidazolates containing alkali and alkaline earth metals, NaMgIm3 and KMgIm3, respectively, are prepared by mechanochemical synthesis and are reported in this paper. NaMgIm3 has been prepared by the reaction between NaIm and Mg(BH4)2 as well as directly from NaIm and MgIm2. Structural evolution and thermal stability were followed by an in situ high-temperature X-ray powder diffraction experiment utilizing synchrotron radiation. In both compounds, the imidazolate ligand is connected to four metal cations forming a complex three-dimensional network with channels running along the c-direction. NaMgIm3 and KMgIm3 are the first members of a new family of imidazolate frameworks with stp topology. The formation of mixed-alkali-metal imidazolate compounds is thermodynamically controlled. LiIm and MgIm2 have not yielded a mixed-metal compound, while KIm reacts swiftly and forms KMgIm3.

18.
Inorg Chem ; 58(8): 4753-4760, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30938152

RESUMO

Ammonia borane, NH3BH3 (AB), is very attractive for hydrogen storage; however, it dehydrogenates exothermally, producing a mixture of polymeric products with limited potential for direct rehydrogenation. Recently, it was shown that AB complexed with Al3+ in Al(BH4)3·AB endothermically dehydrogenates to a single product identified as Al(BH4)3·NHBH, with the potential for direct rehydrogenation of AB. Here we explore the reactivity of AB-derived RNH2BH3 (R = -CH3, -CH2-) with AlX3 salts (X = BH4-, Cl-), aiming to extend the series to different anions and to enlarge the stability window for Al(BH4)3·NRBH. Three novel complexes were identified: Al(BH4)3·CH3NH2BH3 having a molecular structure similar to that of Al(BH4)3·AB but different dehydrogenation properties, as well as [Al(CH3NH2BH3)2Cl2][AlCl4] and [Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4], rare examples of Al3+ making part of the cations and anions simultaneously. The latter compounds are of interest in the design of novel electrolytes for Al-based batteries. The coordination of two ABs to a single Al atom opens a route to materials with higher hydrogen content.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33005285

RESUMO

To investigate the dynamical properties of the novel hybrid compound, lithium benzimidazolate-borohydride Li2(bIm)BH4 (where bIm denotes a benzimidazolate anion, C7N2H5 -), we have used a set of complementary techniques: neutron powder diffraction, ab initio density functional theory calculations, neutron vibrational spectroscopy, nuclear magnetic resonance, neutron spin echo, and quasi-elastic neutron scattering. Our measurements performed over the temperature range from 1.5 to 385 K have revealed the exceptionally fast low-temperature reorientational motion of BH4 - anions. This motion is facilitated by the unusual coordination of tetrahedral BH4 - anions in Li2(bIm)BH4: each anion has one of its H atoms anchored within a nearly square hollow formed by four coplanar Li+ cations, while the remaining -BH3 fragment extends into a relatively open space, being only loosely coordinated to other atoms. As a result, the energy barriers for reorientations of this fragment around the anchored B-H bond axis are very small, and at low temperatures, this motion can be described as rotational tunneling. The tunnel splitting derived from the neutron spin echo measurements at 3.6 K is 0.43(2) µeV. With increasing temperature, we have observed a gradual transition from the regime of low-temperature quantum dynamics to the regime of classical thermally activated jump reorientations. The jump rate of the uniaxial 3-fold reorientations reaches 5 × 1011 s-1 at 80 K. Nearer room temperature and above, both nuclear magnetic resonance and quasielastic neutron scattering measurements have revealed the second process of BH4 - reorientations characterized by the activation energy of 261 meV. This process is several orders of magnitude slower than the uniaxial 3-fold reorientations; the corresponding jump rate reaches ~7 × 108 s-1 at 300 K.

20.
Phys Chem Chem Phys ; 20(44): 27983-27991, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30382273

RESUMO

The most common methods to evaluate hydrogen sorption (volumetric and gravimetric) require significant experience and expensive equipment for providing reproducible results. Both methods allow one to measure excess uptake values which are used to calculate the total amount of hydrogen stored inside of a tank as required for applications. Here we propose an easy to use and inexpensive alternative approach which allows one to evaluate directly the weight of hydrogen inside a material-filled test tank. The weight of the same tank filled with compressed hydrogen in the absence of loaded material is used as a reference. We argue that the only parameter which is of importance for hydrogen storage applications is by how much the material improves the total weight of hydrogen inside of the given volume compared to compressed gas. This parameter which we propose to name Gain includes both volumetric and gravimetric characterization of the material; it can be determined directly without knowing the skeletal volume of the material or excess sorption. The feasibility of the Gravimetric Tank (GT) method was tested using several common carbon and Metal Organic Framework (MOF) materials. The best Gain value of ∼12% was found for the Cu-BTC MOF which means that the tank completely filled with this material stores a 12% higher amount of hydrogen compared to H2 gas at the same P-T conditions. The advantages of the GT method are its inexpensive design, extremely simple procedures and direct results in terms of tank capacity as required for industrial applications. The GT method could be proposed as a standard check for verification of the high hydrogen storage capacity of new materials. The GT method is expected to provide even better accuracy for evaluation of a material's performance for storage of denser gases like e.g. CO2 and CH4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA