Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677734

RESUMO

A detailed study of charge transport in the paramagnetic phase of the cage-cluster dodecaboride Ho0.8Lu0.2B12 with an instability both of the fcc lattice (cooperative Jahn−Teller effect) and the electronic structure (dynamic charge stripes) was carried out at temperatures 1.9−300 K in magnetic fields up to 80 kOe. Four mono-domain single crystals of Ho0.8Lu0.2B12 samples with different crystal axis orientation were investigated in order to establish the singularities of Hall effect, which develop due to (i) the electronic phase separation (stripes) and (ii) formation of the disordered cage-glass state below T*~60 K. It was demonstrated that a considerable intrinsic anisotropic positive component ρanxy appears at low temperatures in addition to the ordinary negative Hall resistivity contribution in magnetic fields above 40 kOe applied along the [001] and [110] axes. A relation between anomalous components of the resistivity tensor ρanxy~ρanxx1.7 was found for H||[001] below T*~60 K, and a power law ρanxy~ρanxx0.83 for the orientation H||[110] at temperatures T < TS~15 K. It is argued that below characteristic temperature TS~15 K the anomalous odd ρanxy(T) and even ρanxx(T) parts of the resistivity tensor may be interpreted in terms of formation of long chains in the filamentary structure of fluctuating charges (stripes). We assume that these ρanxy(H||[001]) and ρanxy(H||[110]) components represent the intrinsic (Berry phase contribution) and extrinsic (skew scattering) mechanism, respectively. Apart from them, an additional ferromagnetic contribution to both isotropic and anisotropic components in the Hall signal was registered and attributed to the effect of magnetic polarization of 5d states (ferromagnetic nano-domains) in the conduction band of Ho0.8Lu0.2B12.

2.
J Phys Condens Matter ; 34(46)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36103871

RESUMO

Tm1-xYbxB12dodecaborides represent model objects for the studies of quantum critical behavior, metal-insulator transitions (MITs) and complex charge-spin-orbital-phonon coupling phenomena. In spite of intensive investigations, the mechanism of semiconducting ground state formation both in YbB12and in the Yb-based strongly correlated electron systems remains a subject of active debates. We have performed first systematic measurements of temperature-dependent spectra of infrared conductivity of Tm0.19Yb81B12at frequencies 40-35 000 cm-1and in the temperature range 10-300 K. Analysis of the temperature evolution of the observed absorption resonances is performed allowing to associate these with the cooperative dynamic Jahn-Teller instability of the boron sub-lattice. This ferrodistortive effect of B12-complexes induces the rattling modes of the rare earth ions leading to emergence of both the intra-gap mixed-type collective excitations and the dynamic charge stripes. We estimate the temperature-dependent effective mass of charge carriers and propose the scenario of transformation of the many-body states in the multiple relaxation channels. We attribute the MIT to the localization of electrons at the vibrationally coupled Yb-Yb pairs, which is accompanied by the electronic phase separation and formation of the nanoscale filamentary structure of electron density (stripes) in Tm1-xYbxB12compounds.

3.
Adv Mater ; 32(10): e1906725, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31997471

RESUMO

SmB6 has recently attracted considerable interest as a candidate for the first strongly correlated topological insulator. Such materials promise entirely new properties such as correlation-enhanced bulk bandgaps or a Fermi surface from spin excitations. Whether SmB6 and its surface states are topological or trivial is still heavily disputed however, and a solution is hindered by major disagreement between angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM) results. Here, a combined ARPES and STM experiment is conducted. It is discovered that the STM contrast strongly depends on the bias voltage and reverses its sign beyond 1 V. It is shown that the understanding of this contrast reversal is the clue to resolving the discrepancy between ARPES and STM results. In particular, the scanning tunneling spectra reflect a low-energy electronic structure at the surface, which supports a trivial origin of the surface states and the surface metallicity of SmB6 .

4.
J Phys Condens Matter ; 30(26): 265402, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29790852

RESUMO

High-quality single crystals of LuB12 are grown using the induction zone melting method. The x-ray data are collected at temperatures 293, 135, 95, 50 K. The crystal structure of LuB12 can be refined with record low R-factor in the cubic Fm [Formula: see text] m symmetry group despite reiterated observations of the cubic symmetry distortions both in the unit-cell values and in the physical properties. A peculiar computing strategy is developed to resolve this contradiction. True symmetry of the electron-density distribution in LuB12 is proved to be much lower than cubic as a result, which correlates very accurately with anisotropy of transport properties of LuB12.

5.
Sci Technol Adv Mater ; 11(2): 023001, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877328

RESUMO

We present Raman spectra of numerous icosahedral boron-rich solids having the structure of α-rhombohedral, ß-rhombohedral, α-tetragonal, ß-tetragonal, YB66, orthorhombic or amorphous boron. The spectra were newly measured and, in some cases, compared with reported data and discussed. We emphasize the importance of a high signal-to-noise ratio in the Raman spectra for detecting weak effects evoked by the modification of compounds, accommodation of interstitial atoms and other structural defects. Vibrations of the icosahedra, occurring in all the spectra, are interpreted using the description of modes in α-rhombohedral boron by Beckel et al. The Raman spectrum of boron carbide is largely clarified. Relative intra- and inter-icosahedral bonding forces are estimated for the different structural groups and for vanadium-doped ß-rhombohedral boron. The validity of Badger's rule is demonstrated for the force constants of inter-icosahedral B-B bonds, whereas the agreement is less satisfactory for the intra-icosahedral B-B bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA