Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Clin Chem ; 70(6): 855-864, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38549041

RESUMO

BACKGROUND: The enhanced precision and selectivity of liquid chromatography-tandem mass spectrometry (LC-MS/MS) makes it an attractive alternative to certain clinical immunoassays. Easily transferrable work flows could help facilitate harmonization and ensure high-quality patient care. We aimed to evaluate the interlaboratory comparability of antibody-free multiplexed insulin and C-peptide LC-MS/MS measurements. METHODS: The laboratories that comprise the Targeted Mass Spectrometry Assays for Diabetes and Obesity Research (TaMADOR) consortium verified the performance of a validated peptide-based assay (reproducibility, linearity, and lower limit of the measuring interval [LLMI]). An interlaboratory comparison study was then performed using shared calibrators, de-identified leftover laboratory samples, and reference materials. RESULTS: During verification, the measurements were precise (2.7% to 3.7%CV), linear (4 to 15 ng/mL for C-peptide and 2 to 14 ng/mL for insulin), and sensitive (LLMI of 0.04 to 0.10 ng/mL for C-peptide and 0.03 ng/mL for insulin). Median imprecision across the 3 laboratories was 13.4% (inter-quartile range [IQR] 11.6%) for C-peptide and 22.2% (IQR 20.9%) for insulin using individual measurements, and 10.8% (IQR 8.7%) and 15.3% (IQR 14.9%) for C-peptide and insulin, respectively, when replicate measurements were averaged. Method comparison with the University of Missouri reference method for C-peptide demonstrated a robust linear correlation with a slope of 1.044 and r2 = 0.99. CONCLUSIONS: Our results suggest that combined LC-MS/MS measurements of C-peptide and insulin are robust and adaptable and that standardization with a reference measurement procedure could allow accurate and precise measurements across sites, which could be important to diabetes research and help patient care in the future.


Assuntos
Peptídeo C , Insulina , Espectrometria de Massas em Tandem , Peptídeo C/sangue , Peptídeo C/análise , Humanos , Espectrometria de Massas em Tandem/métodos , Insulina/análise , Insulina/sangue , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Laboratórios/normas , Espectrometria de Massa com Cromatografia Líquida
2.
iScience ; 27(2): 108769, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303689

RESUMO

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

3.
Cancers (Basel) ; 15(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760474

RESUMO

A major challenge in lung cancer prevention and cure hinges on identifying the at-risk population that ultimately develops lung cancer. Previously, we reported proteomic alterations in the cytologically normal bronchial epithelial cells collected from the bronchial brushings of individuals at risk for lung cancer. The purpose of this study is to validate, in an independent cohort, a selected list of 55 candidate proteins associated with risk for lung cancer with sensitive targeted proteomics using selected reaction monitoring (SRM). Bronchial brushings collected from individuals at low and high risk for developing lung cancer as well as patients with lung cancer, from both a subset of the original cohort (batch 1: n = 10 per group) and an independent cohort of 149 individuals (batch 2: low risk (n = 32), high risk (n = 34), and lung cancer (n = 83)), were analyzed using multiplexed SRM assays. ALDH3A1 and AKR1B10 were found to be consistently overexpressed in the high-risk group in both batch 1 and batch 2 brushing specimens as well as in the biopsies of batch 1. Validation of highly discriminatory proteins and metabolic enzymes by SRM in a larger independent cohort supported their use to identify patients at high risk for developing lung cancer.

4.
Cancer Cell ; 41(9): 1586-1605.e15, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567170

RESUMO

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of ß-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.


Assuntos
Neoplasias do Endométrio , Metformina , Proteogenômica , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Estudos Prospectivos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Metformina/farmacologia
5.
Proc Natl Acad Sci U S A ; 120(30): e2305495120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459532

RESUMO

Marine algae are responsible for half of the world's primary productivity, but this critical carbon sink is often constrained by insufficient iron. One species of marine algae, Dunaliella tertiolecta, is remarkable for its ability to maintain photosynthesis and thrive in low-iron environments. A related species, Dunaliella salina Bardawil, shares this attribute but is an extremophile found in hypersaline environments. To elucidate how algae manage their iron requirements, we produced high-quality genome assemblies and transcriptomes for both species to serve as a foundation for a comparative multiomics analysis. We identified a host of iron-uptake proteins in both species, including a massive expansion of transferrins and a unique family of siderophore-iron-uptake proteins. Complementing these multiple iron-uptake routes, ferredoxin functions as a large iron reservoir that can be released by induction of flavodoxin. Proteomic analysis revealed reduced investment in the photosynthetic apparatus coupled with remodeling of antenna proteins by dramatic iron-deficiency induction of TIDI1, which is closely related but identifiably distinct from the chlorophyll binding protein, LHCA3. These combinatorial iron scavenging and sparing strategies make Dunaliella unique among photosynthetic organisms.


Assuntos
Clorofíceas , Extremófilos , Ferro/metabolismo , Multiômica , Proteômica , Fotossíntese , Proteínas/metabolismo
6.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37390828

RESUMO

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Autoimunidade , Autoanticorpos , Biomarcadores
7.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993277

RESUMO

There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity at a cell-type-specific level to better understand and predict the function of complex biological systems, such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverages due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (Microdroplet Processing in One pot for Trace Samples), the multiplexed isobaric labelling, and a nanoflow peptide fractionation approach. The integrated workflow allowed to maximize proteome coverage of laser-isolated tissue samples containing nanogram proteins. We demonstrated the deep spatial proteomics can quantify more than 5,000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and reveal unique islet microenvironments.

8.
J Proteome Res ; 22(3): 942-950, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626706

RESUMO

Prostate cancer (PCa) is the second leading cause of male cancer-related deaths in the United States. The pre-mature forms of prostate-specific antigen (PSA), proPSA, were shown to be associated with PCa. However, there is a technical challenge in the development of antibody-based immunoassays for specific recognition of each individual proPSA isoform. Herein, we report the development of highly specific, antibody-free, targeted mass spectrometry assays for simultaneous quantification of [-2], [-4], [-5], and [-7] proPSA isoforms in voided urine. The newly developed proPSA assays capitalize on Lys-C digestion to generate surrogate peptides with appropriate length (9-16 amino acids) along with long-gradient liquid chromatography separation. The assay utility of these isoform markers was evaluated in a cohort of 30 well-established clinical urine samples for distinguishing PCa patients from healthy controls. Under the 95% confidence interval, the combination of [-2] and [-4] proPSA isoforms yields the area under curve (AUC) of 0.86, and the AUC value for the combined all four isoforms was calculated to be 0.85. We have further verified [-2]proPSA, the dominant isoform, in an independent cohort of 34 clinical urine samples. Validation of proPSA isoforms in large-scale cohorts is needed to demonstrate their potential clinical utility.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Imunoensaio , Isoformas de Proteínas , Espectrometria de Massas
9.
Free Radic Biol Med ; 193(Pt 1): 373-384, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36306991

RESUMO

Perturbation to the redox state accompanies many diseases and its effects are viewed through oxidation of biomolecules, including proteins, lipids, and nucleic acids. The thiol groups of protein cysteine residues undergo an array of redox post-translational modifications (PTMs) that are important for regulation of protein and pathway function. To better understand what proteins are redox regulated following a perturbation, it is important to be able to comprehensively profile protein thiol oxidation at the proteome level. Herein, we report a deep redox proteome profiling workflow and demonstrate its application in measuring the changes in thiol oxidation along with global protein expression in skeletal muscle from mdx mice, a model of Duchenne Muscular Dystrophy (DMD). In-depth coverage of the thiol proteome was achieved with >18,000 Cys sites from 5,608 proteins in muscle being quantified. Compared to the control group, mdx mice exhibit markedly increased thiol oxidation, where a ∼2% shift in the median oxidation occupancy was observed. Pathway analysis for the redox data revealed that coagulation system and immune-related pathways were among the most susceptible to increased thiol oxidation in mdx mice, whereas protein abundance changes were more enriched in pathways associated with bioenergetics. This study illustrates the importance of deep redox profiling in gaining greater insight into oxidative stress regulation and pathways/processes that are perturbed in an oxidizing environment.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Proteoma/metabolismo , Fluxo de Trabalho , Oxirredução , Músculo Esquelético/metabolismo , Cisteína/metabolismo , Compostos de Sulfidrila/metabolismo
10.
Nat Protoc ; 16(8): 3737-3760, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34244696

RESUMO

Mass-spectrometry-based proteomic analysis is a powerful approach for discovering new disease biomarkers. However, certain critical steps of study design such as cohort selection, evaluation of statistical power, sample blinding and randomization, and sample/data quality control are often neglected or underappreciated during experimental design and execution. This tutorial discusses important steps for designing and implementing a liquid-chromatography-mass-spectrometry-based biomarker discovery study. We describe the rationale, considerations and possible failures in each step of such studies, including experimental design, sample collection and processing, and data collection. We also provide guidance for major steps of data processing and final statistical analysis for meaningful biological interpretations along with highlights of several successful biomarker studies. The provided guidelines from study design to implementation to data interpretation serve as a reference for improving rigor and reproducibility of biomarker development studies.


Assuntos
Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , Biomarcadores/química , Humanos , Reprodutibilidade dos Testes
11.
Cancer Cell ; 39(7): 999-1014.e8, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34171263

RESUMO

Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.


Assuntos
Compostos de Anilina/farmacologia , Aurora Quinase B/metabolismo , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Pirazinas/farmacologia , Microambiente Tumoral , Aurora Quinase B/genética , Biomarcadores Tumorais/genética , Exoma , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metaboloma , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Células Tumorais Cultivadas
12.
mBio ; 12(3): e0053021, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182779

RESUMO

Penicillin binding protein 2a (PBP2a)-dependent resistance to ß-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact ß-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to ß-lactam antibiotics. IMPORTANCEmecA-dependent methicillin resistance in MRSA is subject to regulation by numerous accessory factors involved in cell wall biosynthesis, nucleotide signaling, and central metabolism. Here, we report that mutations in the TCA cycle gene, sucC, increased susceptibility to ß-lactam antibiotics and was accompanied by significant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in the proteome. Although cell wall structure and cross-linking were unchanged, significantly increased succinylation of the major autolysin Atl, which was the most succinylated protein in the proteome, was accompanied by near complete repression of autolytic activity. These findings link central metabolism and levels of succinyl-CoA to the regulation of ß-lactam antibiotic resistance in MRSA through succinylome-mediated control of two interlinked cell wall phenotypes. Drug-mediated interference of the SucCD-controlled succinylome may help overcome ß-lactam resistance.


Assuntos
Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , beta-Lactamas/farmacologia , Acil Coenzima A/análise , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Mutação , Proteoma , Resistência beta-Lactâmica
13.
Cancer Epidemiol Biomarkers Prev ; 29(8): 1665-1672, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32532828

RESUMO

BACKGROUND: Approximately 85% of the U.S. military active duty population is male and less than 50 years of age, with elevated levels of known risk factors for oropharyngeal squamous cell carcinoma (OPSCC), including smoking, excessive use of alcohol, and greater numbers of sexual partners, and elevated prevalence of human papilloma virus (HPV). Given the recent rise in incidence of OPSCC related to the HPV, the Department of Defense Serum Repository provides an unparalleled resource for longitudinal studies of OPSCC in the military for the identification of early detection biomarkers. METHODS: We identified 175 patients diagnosed with OPSCC with 175 matched healthy controls and retrieved a total of 978 serum samples drawn at the time of diagnosis, 2 and 4 years prior to diagnosis, and 2 years after diagnosis. Following immunoaffinity depletion, serum samples were analyzed by targeted proteomics assays for multiplexed quantification of a panel of 146 candidate protein biomarkers from the curated literature. RESULTS: Using a Random Forest machine learning approach, we derived a 13-protein signature that distinguishes cases versus controls based on longitudinal changes in serum protein concentration. The abundances of each of the 13 proteins remain constant over time in control subjects. The AUC for the derived Random Forest classifier was 0.90. CONCLUSIONS: This 13-protein classifier is highly promising for detection of OPSCC prior to overt symptoms. IMPACT: Use of longitudinal samples has significant potential to identify biomarkers for detection and risk stratification.


Assuntos
Proteínas Sanguíneas/metabolismo , Neoplasias de Cabeça e Pescoço/diagnóstico , Estudos de Casos e Controles , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estudos Longitudinais , Masculino
14.
Cancers (Basel) ; 12(5)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429558

RESUMO

Although ~40% of screen-detected prostate cancers (PCa) are indolent, advanced-stage PCa is a lethal disease with 5-year survival rates around 29%. Identification of biomarkers for early detection of aggressive disease is a key challenge. Starting with 52 candidate biomarkers, selected from existing PCa genomics datasets and known PCa driver genes, we used targeted mass spectrometry to quantify proteins that significantly differed in primary tumors from PCa patients treated with radical prostatectomy (RP) across three study outcomes: (i) metastasis ≥1-year post-RP, (ii) biochemical recurrence ≥1-year post-RP, and (iii) no progression after ≥10 years post-RP. Sixteen proteins that differed significantly in an initial set of 105 samples were evaluated in the entire cohort (n = 338). A five-protein classifier which combined FOLH1, KLK3, TGFB1, SPARC, and CAMKK2 with existing clinical and pathological standard of care variables demonstrated significant improvement in predicting distant metastasis, achieving an area under the receiver-operating characteristic curve of 0.92 (0.86, 0.99, p = 0.001) and a negative predictive value of 92% in the training/testing analysis. This classifier has the potential to stratify patients based on risk of aggressive, metastatic PCa that will require early intervention compared to low risk patients who could be managed through active surveillance.

15.
Front Bioeng Biotechnol ; 8: 603488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425868

RESUMO

Targeted proteomics is a mass spectrometry-based protein quantification technique with high sensitivity, accuracy, and reproducibility. As a key component in the multi-omics toolbox of systems biology, targeted liquid chromatography-selected reaction monitoring (LC-SRM) measurements are critical for enzyme and pathway identification and design in metabolic engineering. To fulfill the increasing need for analyzing large sample sets with faster turnaround time in systems biology, high-throughput LC-SRM is greatly needed. Even though nanoflow LC-SRM has better sensitivity, it lacks the speed offered by microflow LC-SRM. Recent advancements in mass spectrometry instrumentation significantly enhance the scan speed and sensitivity of LC-SRM, thereby creating opportunities for applying the high speed of microflow LC-SRM without losing peptide multiplexing power or sacrificing sensitivity. Here, we studied the performance of microflow LC-SRM relative to nanoflow LC-SRM by monitoring 339 peptides representing 132 enzymes in Pseudomonas putida KT2440 grown on various carbon sources. The results from the two LC-SRM platforms are highly correlated. In addition, the response curve study of 248 peptides demonstrates that microflow LC-SRM has comparable sensitivity for the majority of detected peptides and better mass spectrometry signal and chromatography stability than nanoflow LC-SRM.

16.
Biomolecules ; 9(8)2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426316

RESUMO

Phycobilisomes (PBSs) are large (3-5 megadalton) pigment-protein complexes in cyanobacteria that associate with thylakoid membranes and harvest light primarily for photosystem II. PBSs consist of highly ordered assemblies of pigmented phycobiliproteins (PBPs) and linker proteins that can account for up to half of the soluble protein in cells. Cyanobacteria adjust to changing environmental conditions by modulating PBS size and number. In response to nutrient depletion such as nitrogen (N) deprivation, PBSs are degraded in an extensive, tightly controlled, and reversible process. In Synechococcus elongatus UTEX 2973, a fast-growing cyanobacterium with a doubling time of two hours, the process of PBS degradation is very rapid, with 80% of PBSs per cell degraded in six hours under optimal light and CO2 conditions. Proteomic analysis during PBS degradation and re-synthesis revealed multiple proteoforms of PBPs with partially degraded phycocyanobilin (PCB) pigments. NblA, a small proteolysis adaptor essential for PBS degradation, was characterized and validated with targeted mass spectrometry. NblA levels rose from essentially 0 to 25,000 copies per cell within 30 min of N depletion, and correlated with the rate of decrease in phycocyanin (PC). Implications of this correlation on the overall mechanism of PBS degradation during N deprivation are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Ficobilissomas/metabolismo , Proteômica , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
17.
Anal Chem ; 91(15): 9707-9715, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31241912

RESUMO

Two-dimensional reversed-phase capillary liquid chromatography (2D RPLC) separations have enabled comprehensive proteome profiling of biological systems. However, milligram sample quantities of proteins are typically required due to significant losses during offline fractionation. Such a large sample requirement generally precludes the application samples in the nanogram to low-microgram range. To achieve in-depth proteomic analysis of such small-sized samples, we have developed the nanoFAC (nanoflow Fractionation and Automated Concatenation) 2D RPLC platform, in which the first dimension high-pH fractionation was performed on a 75-µm i.d. capillary column at a 300 nL/min flow rate with automated fraction concatenation, instead of on a typically used 2.1 mm column at a 200 µL/min flow rate with manual concatenation. Each fraction was then fully transferred to the second-dimension low-pH nanoLC separation using an autosampler equipped with a custom-machined syringe. We have found that using a polypropylene 96-well plate as collection device as well as the addition of n-Dodecyl ß-d-maltoside (0.01%) in the collection buffer can significantly improve sample recovery. We have demonstrated the nanoFAC 2D RPLC platform can achieve confident identifications of ∼49,000-94,000 unique peptides, corresponding to ∼6,700-8,300 protein groups using only 100-1000 ng of HeLa tryptic digest (equivalent to ∼500-5,000 cells). Furthermore, by integrating with phosphopeptide enrichment, the nanoFAC 2D RPLC platform can identify ∼20,000 phosphopeptides from 100 µg of MCF-7 cell lysate.


Assuntos
Automação , Cromatografia de Fase Reversa/métodos , Nanotecnologia/métodos , Fosfoproteínas/química , Cromatografia de Fase Reversa/instrumentação , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanotecnologia/instrumentação , Shewanella
18.
Sci Rep ; 9(1): 7264, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086210

RESUMO

Hepcidin, a cysteine-rich peptide hormone, secreted mainly by the liver, plays a central role in iron metabolism regulation. Emerging evidence suggests that disordered iron metabolism is a risk factor for various types of diseases including cancers. However, it remains challenging to apply current mass spectrometry (MS)-based hepcidin assays for precise quantification due to the low fragmentation efficiency of intact hepcidin as well as synthesis difficulties for the intact hepcidin standard. To address these issues we recently developed a reliable sensitive targeted MS assay for hepcidin quantification from clinical samples that uses fully alkylated rather than intact hepcidin as the internal standard. Limits of detection and quantification were determined to be <0.5 ng/mL and 1 ng/mL, respectively. Application of the alkylated hepcidin assay to 70 clinical plasma samples (42 non-cancerous and 28 ovarian cancer patient samples) enabled reliable detection of endogenous hepcidin from the plasma samples, as well as conditioned culture media. The hepcidin concentrations ranged from 0.0 to 95.6 ng/mL across non-cancerous and cancer plasma specimens. Interestingly, cancer patients were found to have significantly higher hepcidin concentrations compared to non-cancerous patients (mean: 20.6 ng/ml for cancer; 5.94 ng/ml for non-cancerous) (p value < 0.001). Our results represent the first application of the alkylated hepcidin assay to clinical samples and demonstrate that the developed assay has better sensitivity and quantification accuracy than current MS-based hepcidin assays without the challenges in synthesis of intact hepcidin standard and accurately determining its absolute amount.


Assuntos
Hepcidinas/análise , Espectrometria de Massas/métodos , Calibragem , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Feminino , Hepcidinas/sangue , Humanos , Limite de Detecção , Neoplasias Ovarianas/química , Ovário/química
19.
J Proteome Res ; 18(2): 694-699, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30525668

RESUMO

Targeted proteomics experiments based on selected reaction monitoring (SRM) have gained wide adoption in the use of clinical biomarkers, cellular modeling, and numerous other biological experiments due to their highly accurate and reproducible quantification. The quantitative accuracy in targeted proteomics experiments is reliant on the stable-isotope, heavy-labeled peptide standards that are spiked into a sample and used as a reference when calculating the abundance of endogenous peptides. Therefore, the quality of measurement for these standards is a critical factor in determining whether data acquisition was successful. With improved mass spectrometry (MS) instrumentation that enables the monitoring of hundreds of peptides in hundreds to thousands of samples, quality assessment is increasingly important and cannot be performed manually. We present Q4SRM, a software tool that rapidly checks the signal from all heavy-labeled peptides and flags those that fail quality-control metrics. Using four metrics, the tool detects problems with both individual SRM transitions and the collective group of transitions that monitor a single peptide. The program's speed and simplicity enable its use at the point of data acquisition and can be ideally run immediately upon the completion of a liquid chromatography-SRM-MS analysis.


Assuntos
Marcação por Isótopo/normas , Proteômica/métodos , Controle de Qualidade , Software , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Peptídeos/normas , Proteômica/normas
20.
Anal Chem ; 91(2): 1441-1451, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30557009

RESUMO

Heterogeneity in composition is inherent in all cell populations, even those containing a single cell type. Single-cell proteomics characterization of cell heterogeneity is currently achieved by antibody-based technologies, which are limited by the availability of high-quality antibodies. Herein we report a simple, easily implemented, mass spectrometry (MS)-based targeted proteomics approach, termed cLC-SRM (carrier-assisted liquid chromatography coupled to selected reaction monitoring), for reliable multiplexed quantification of proteins in low numbers of mammalian cells. We combine a new single-tube digestion protocol to process low numbers of cells with minimal loss together with sensitive LC-SRM for protein quantification. This single-tube protocol builds upon trifluoroethanol digestion and further minimizes sample losses by tube pretreatment and the addition of carrier proteins. We also optimized the denaturing temperature and trypsin concentration to significantly improve digestion efficiency. cLC-SRM was demonstrated to have sufficient sensitivity for reproducible detection of most epidermal growth factor receptor (EGFR) pathway proteins expressed at levels ≥30 000 and ≥3000 copies per cell for 10 and 100 mammalian cells, respectively. Thus, cLC-SRM enables reliable quantification of low to moderately abundant proteins in less than 100 cells and could be broadly useful for multiplexed quantification of important proteins in small subpopulations of cells or in size-limited clinical samples. Further improvements of this method could eventually enable targeted single-cell proteomics when combined with either SRM or other emerging ultrasensitive MS detection.


Assuntos
Proteômica/métodos , Contagem de Células , Cromatografia Líquida , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Desnaturação Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA