Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Genetics ; 177(4): 2243-50, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18073429

RESUMO

Understanding the mechanisms controlling the generation and maintenance of biodiversity provides some of the planet's greatest and most pressing challenges. Variation in resource concentration, which varies widely at multiple scales, may cause biodiversity to increase, decrease, or exhibit a unimodal response and underlying mechanisms remain obscure. We established experimental cultures of long-term stationary phase (LTSP) Escherichia coli to test whether per capita heterozygosity varies with resource concentration, and, if so, whether population sizes associated with different resource concentrations contributed to these patterns. Our results provide the clearest example to date of increasing per capita heterozygosity with increasing resource concentration. Further, our experimental manipulations of population size, independent of resource concentration, provide the first unequivocal evidence that population size is one of the underlying factors controlling per capita heterozygosity along such resource gradients. Specifically, we show that cultures with higher maximum population sizes, associated with higher resource concentrations, have higher per capita heterozygosity. These experiments provide the first experimental evidence for an underappreciated factor controlling biodiversity along resource gradients--population size. This direct evidence of population size influencing diversification rates has implications for regional and global scale patterns of biodiversity.


Assuntos
Biodiversidade , Escherichia coli/citologia , Ecossistema , Escherichia coli/genética , Heterozigoto , Densidade Demográfica , Dinâmica Populacional
2.
J Bacteriol ; 183(21): 6288-93, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11591672

RESUMO

The uptake and stable maintenance of extracellular DNA, genetic transformation, is universally recognized as a major force in microbial evolution. We show here that extracellular DNA, both homospecific and heterospecific, can also serve as the sole source of carbon and energy supporting microbial growth. Mutants unable to consume DNA suffer a significant loss of fitness during stationary-phase competition. In Escherichia coli, the use of DNA as a nutrient depends on homologs of proteins involved in natural genetic competence and transformation in Haemophilus influenzae and Neisseria gonorrhoeae. Homologs of these E. coli genes are present in many members of the gamma subclass of Proteobacteria, suggesting that the mechanisms for consumption of DNA may have been widely conserved during evolution.


Assuntos
DNA Bacteriano/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Genes Bacterianos , Contagem de Colônia Microbiana , Meios de Cultura , Meios de Cultivo Condicionados , Escherichia coli/metabolismo , Evolução Molecular , Gammaproteobacteria/genética , Haemophilus influenzae/genética , Mutação , Homologia de Sequência de Aminoácidos , Transformação Bacteriana
3.
EMBO J ; 20(5): 1184-91, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11230141

RESUMO

The enhanced stress resistance exhibited by starved bacteria represents a central facet of virulence, since nutrient depletion is regularly encountered by pathogens in their natural in vivo and ex vivo environments. Here we explore the notion that the regular stress responses, which are mediated by enzymatically catalyzed chemical transactions and promote endurance during the logarithmic growth phase, can no longer be effectively induced during starvation. We show that survival of bacteria in nutrient-depleted habitats is promoted by a novel strategy: finely tuned and fully reversible intracellular phase transitions. These non-enzymatic transactions, detected and studied in bacteria as well as in defined in vitro systems, result in DNA sequestration and generic protection within tightly packed and highly ordered assemblies. Since this physical mode of defense is uniquely independent of enzymatic activity or de novo protein synthesis, and consequently does not require energy consumption, it promotes virulence by enabling long-term bacterial endurance and enhancing antibiotic resistance in adverse habitats.


Assuntos
Cromatina/metabolismo , Citoproteção , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Cromatina/genética , Cromatina/ultraestrutura , Cristalização , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/citologia , Escherichia coli/ultraestrutura , Íons , Magnésio/farmacologia , Microscopia Eletrônica , Espalhamento de Radiação , Raios X
4.
J Bacteriol ; 181(23): 7390-3, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10572146

RESUMO

The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase whose expression is 10-fold higher under anaerobic than aerobic conditions. Transcription of the gene is under the negative control of the Cra (catabolite repressor-activator) protein, whereas translation of the adhE mRNA requires processing by RNase III. In this report, we show that the expression of adhE also depends on the Fis (factor for inversion stimulation) protein. A strain bearing a fis::kan null allele failed to grow anaerobically on glucose solely because of inadequate adhE transcription. However, fis expression itself is not under redox control. Sequence inspection of the adhE promoter revealed three potential Fis binding sites. Electrophoretic mobility shift analysis, using purified Fis protein and adhE promoter DNA, showed three different complexes.


Assuntos
Álcool Desidrogenase/biossíntese , Aldeído Oxirredutases/biossíntese , Proteínas de Transporte/genética , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Complexos Multienzimáticos/biossíntese , Fusão Gênica Artificial , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/biossíntese , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Isopropiltiogalactosídeo/metabolismo , Dados de Sequência Molecular , Consumo de Oxigênio/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas Repressoras/genética , Transcrição Gênica , beta-Galactosidase/metabolismo
5.
Nature ; 400(6739): 83-5, 1999 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-10403254

RESUMO

The crystalline state is considered to be incompatible with life. However, in living systems exposed to severe environmental assaults, the sequestration of vital macromolecules in intracellular crystalline assemblies may provide an efficient means for protection. Here we report a generic defence strategy found in Escherichia coli, involving co-crystallization of its DNA with the stress-induced protein Dps. We show that when purified Dps and DNA interact, extremely stable crystals form almost instantaneously, within which DNA is sequestered and effectively protected against varied assaults. Crystalline structures with similar lattice spacings are formed in E. coli in which Dps is slightly over expressed, as well as in starved wild-type bacteria. Hence, DNA-Dps co-crystallization is proposed to represent a binding mode that provides wide-range protection of DNA by sequestration. The rapid induction and large-scale production of Dps in response to stress, as well as the presence of Dps homologues in many distantly related bacteria, indicate that DNA protection by biocrystallization may be crucial and widespread in prokaryotes.


Assuntos
Proteínas de Bactérias/fisiologia , DNA Bacteriano/fisiologia , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Proteínas de Bactérias/ultraestrutura , Cristalização , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Proteínas de Choque Térmico/ultraestrutura , Ligação Proteica
6.
Proc Natl Acad Sci U S A ; 96(7): 4023-7, 1999 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-10097156

RESUMO

Models of evolutionary processes postulate that new alleles appear in populations through random spontaneous mutation. Alleles that confer a competitive advantage in particular environments are selected and populations can be taken over by individuals expressing these advantageous mutations. We have studied the evolutionary process by using Escherichia coli cultures incubated for prolonged periods of time in stationary phase. The populations of surviving cells were shown to be highly dynamic, even after many months of incubation. Evolution proceeded along different paths even when the initial conditions were identical. As cultures aged, the takeovers by fitter mutants were incomplete, resulting in the coexistence of multiple mutant forms and increased microbial diversity. Thus, the study of bacterial populations in stationary phase provides a model system for understanding the evolution of diversity in natural populations.


Assuntos
Evolução Biológica , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Modelos Biológicos , Cromossomos Bacterianos/química , Meios de Cultura , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Campo Pulsado , Escherichia coli/citologia , Variação Genética , Seleção Genética , Fatores de Tempo
7.
Nat Struct Biol ; 5(4): 294-303, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9546221

RESUMO

The crystal structure of Dps, a DNA-binding protein from starved E. coli that protects DNA from oxidative damage, has been solved at 1.6 A resolution. The Dps monomer has essentially the same fold as ferritin, which forms a 24-mer with 432 symmetry, a hollow core and pores at the three-fold axes. Dps forms a dodecamer with 23 (tetrahedral) point group symmetry which also has a hollow core and pores at the three-folds. The structure suggests a novel DNA-binding motif and a mechanism for DNA protection based on the sequestration of Fe ions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Ferritinas/química , Conformação Proteica , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/fisiologia , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Estresse Oxidativo , Mutação Puntual , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
J Mol Biol ; 264(4): 675-95, 1996 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-8980678

RESUMO

The Fis protein from Escherichia coli and Salmonella typhimurium regulates many diverse reactions including recombination, transcription, and replication and is one of the most abundant DNA binding proteins present in the cell under certain physiological conditions. As a specific regulator, Fis binds to discrete sites that are poorly related in primary sequence. Analysis of DNA scission by a collection of Fis conjugates to 1,10-phenanthroline-copper combined with comparative gel electrophoresis has shown that the structures of Fis-DNA complexes are highly variable, displaying overall DNA curvatures that range from < or = 50 degrees to > or = 90 degrees. This variability is primarily determined by differential wrapping of flanking DNA around Fis. By contrast, DNA bending within the core recognition regions appears similar among the binding sites that were analyzed. Flanking DNA contacts by Fis depend on the nucleotide sequence and are mediated by an electrostatic interaction with arginine 71 and a hydrogen bond with asparagine 73, both of which are located outside of the helix-turn-helix DNA binding motif. These contacts strongly influence the kinetics of binding. These data, combined with the crystal structure of Fis, have enabled us to generate new models for Fis-DNA complexes that emphasize the variability in DNA structures within the flanking regions.


Assuntos
Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , DNA/química , Conformação de Ácido Nucleico , Conformação Proteica , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dimerização , Eletroforese em Gel de Poliacrilamida , Fator Proteico para Inversão de Estimulação , Sequências Hélice-Volta-Hélice , Ligação de Hidrogênio , Fatores Hospedeiros de Integração , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Fenantrolinas
9.
J Biol Chem ; 269(46): 28947-54, 1994 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-7961857

RESUMO

The influence of proline on bending of the alpha-helix was investigated by replacement of the proline residue located in the middle of the long alpha-helix of the Fis protein with alanine, serine, or leucine. Each of the three substitutions folded into a stable protein with the same or higher melting points than the wild-type, but only Pro61Ala was functionally active in stimulating Hin-mediated DNA inversion. Pro61Ala formed crystals that were isomorphous with the wild-type protein allowing the structure to be determined at 1.9-A resolution by x-ray diffraction methods. The structure of the Pro61Ala mutant is almost identical to the wild-type protein, consistent with its near wild-type activity. One of the alpha-helices, the B-helix, is kinked in the wild-type Fis protein by 20 degrees which was previously assumed to be caused solely by the presence of proline 61 in the center of the helix. However, the B-helix is still kinked by 16 degrees when proline 61 is replaced by alanine. Local peptide backbone movement around residue 57 adjusts the geometry of the helix to accommodate the new main chain hydrogen bond between the -CO group in Glu57 and the -NH group in Ala61. Thus, the kink of the alpha-helix in Pro61Ala does not require the presence of proline.


Assuntos
Alanina/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Mutação , Prolina/química , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 91(5): 1721-5, 1994 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-8127871

RESUMO

The Escherichia coli Fis (factor for inversion stimulation) protein functions in many diverse biological systems including recombination, transcription, and DNA replication. Although Fis is a site-specific DNA-binding protein, it lacks a well-defined consensus recognition sequence. The electrophoretic mobility of Fis-DNA complexes, along with considerations of the Fis crystal structure, indicates that significant deformation of DNA occurs upon Fis binding. To investigate the structure of Fis-DNA complexes, the chemical nuclease 1,10-phenanthroline-copper complex (OP-Cu) has been linked to four specific sites within the Fis DNA-binding domain. Two of these Fis-OP derivatives were active in cleaving DNA. The scission patterns obtained on four different Fis binding sites indicate that Fis positions itself on these highly divergent DNA sequences in a very similar fashion. The patterns of cleavage of a derivative at Asn-98 generally support a model of a Fis-DNA complex that contains specific bends within the core-recognition sequence. Data from a second Fis-OP derivative at Asn-73 provides evidence for greater wrapping of flanking DNA around the sides of the Fis protein than was previously postulated. The cleavage efficiency of flanking segments varies, suggesting that the extent of DNA wrapping is sequence dependent. Specific amino acids on Fis are implicated in promoting this DNA wrapping.


Assuntos
Proteínas de Transporte/química , DNA Bacteriano/química , Proteínas de Escherichia coli , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Transporte/genética , Reagentes de Ligações Cruzadas , DNA Bacteriano/genética , Escherichia coli/química , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Fenantrolinas , Conformação Proteica
12.
J Bacteriol ; 175(6): 1580-9, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8449867

RESUMO

The Escherichia coli Fis protein binds to three sites in the upstream activation region of the rrnB P1 promoter and enhances transcription 5- to 10-fold in vivo. In this report, we investigate the mechanism of Fis-dependent activation of transcription. We show that stimulation of rrnB P1 transcription by Fis can occur on linear DNA templates and does not require DNA upstream of the promoter-proximal Fis site I. Mutants of Fis defective for Hin-mediated recombination have been isolated previously and have defined an N-terminal domain required for DNA inversion by Hin in addition to the C-terminal domain which is required for DNA binding. Several of these mutants were found to be defective in stimulation of rrnB P1 transcription in vivo and in vitro. Activation-defective mutants fall into three classes: those that fail to bind to the upstream activation region, those that bind but fail to bend the DNA normally, and those that bind and bend but still fail to activate transcription. We conclude that it is unlikely that Fis functions by simply bringing upstream sequences or bound factors into the proximity of RNA polymerase to activate transcription. Rather, the data are most easily interpreted in terms of transcription activation by direct interactions between Fis and RNA polymerase, requiring precise positioning of the two proteins facilitated by bending of the DNA binding site.


Assuntos
Proteínas de Transporte/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Óperon de RNAr/genética , DNA Bacteriano/química , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Mutação , Conformação de Ácido Nucleico , Recombinação Genética , Mapeamento por Restrição , Transcrição Gênica
13.
Mol Microbiol ; 6(22): 3257-65, 1992 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-1484481

RESUMO

Higher-order nucleoprotein complexes are associated with many biological processes. In bacteria the formation of these macromolecular structures for DNA recombination, replication, and transcription often requires not only the participation of specific enzymes and co-factors, but also a class of DNA-binding proteins collectively known as 'nucleoid-associated' or 'histone-like' proteins. Examples of this class of proteins are HU, Integration Host Factor, H-NS, and Fis. Fis was originally identified as the factor for inversion stimulation of the homologous Hin and Gin site-specific DNA recombinases of Salmonella and phage Mu, respectively. This small, basic, DNA-bending protein has recently been shown to function in many other reactions including phage lambda site-specific recombination, transcriptional activation of rRNA and tRNA operons, repression of its own synthesis, and oriC-directed DNA replication. Cellular concentrations of Fis vary tremendously under different growth conditions which may have important regulatory implications for the physiological role of Fis in these different reactions. The X-ray crystal structure of Fis has been determined and insights into its mode of DNA binding and mechanisms of action in these disparate systems are being made.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli , Escherichia coli/fisiologia , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Transporte/genética , Inversão Cromossômica , Replicação do DNA , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração , Modelos Moleculares , Dados de Sequência Molecular , Recombinação Genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
14.
Proc Natl Acad Sci U S A ; 88(21): 9558-62, 1991 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-1946369

RESUMO

The 98-amino acid Fis protein from Escherichia coli functions in a variety of reactions, including promotion of Hin-mediated site-specific DNA inversion when bound to an enhancer sequence. It is unique among site-specific DNA-binding proteins in that it binds to a large number of different DNA sequences, for which a consensus sequence is difficult to establish. X-ray crystal structure analyses have been carried out at 2.3 A resolution for wild-type Fis and for an Arg-89----Cys mutant that does not stimulate DNA inversion. Each monomer of the Fis dimer has four alpha-helices, A-D; the first 19 residues are disordered in the crystal. The end of each C helix is hydrogen bonded to the beginning of helix B' from the opposite subunit in what effectively is one long continuous, although bent, helix. The four helices, C, B', C', and B, together define a platform through the center of the Fis molecule: helices A and A' are believed to be involved with Hin recombinase on one side, and helices D and D' interact with DNA lying on the other side of the platform. Helices C and D of each subunit comprise a helix-turn-helix (HTH) DNA-binding element. The spacing of these two HTH elements in the dimer, 25 A, is too short to allow insertion into adjacent major grooves of a straight B-DNA helix. However, bending the DNA at discrete points, to an overall radius of curvature of 62 A, allows efficient docking of a B-DNA helix with the Fis molecule. The proposed complex explains the experimentally observed patterns of methylation protection and DNase I cleavage hypersensitivity. The x-ray structure accounts for the effects of mutations in the Fis sequence. Those that affect DNA inversion but not DNA binding are located within the N-terminal disordered region and helix A. This inversion activation domain is physically separated in the Fis molecule from the HTH elements and may specify a region of contact with the Hin recombinase. In contrast, mutations that affect HTH helices C and D, or interactions of these with helix B, have the additional effect of decreasing or eliminating binding to DNA.


Assuntos
Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Escherichia coli , Recombinação Genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Transporte/metabolismo , Gráficos por Computador , Simulação por Computador , Cristalografia , Análise Mutacional de DNA , Proteínas de Ligação a DNA/fisiologia , Escherichia coli , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Relação Estrutura-Atividade
15.
EMBO J ; 10(6): 1593-603, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1851089

RESUMO

The Fis protein of E. coli binds to a recombinational enhancer sequence that is required to stimulate Hin-mediated DNA inversion. Fis is also required for efficient lambda prophase excision in vivo. The properties of mutant Fis proteins were examined in vivo and in vitro with respect to their stimulatory effects on these two different site-specific DNA recombination reactions. Both recombination reactions are dramatically affected by mutations altering a helix-turn-helix DNA binding motif located near the Fis C-terminus (residues 74-93). These mutations invariably decrease DNA binding affinity and some cause reduced DNA bending. Mutations in the Fis N-terminal region reduce or abolish the stimulation of Hin-mediated DNA recombination by Fis, but have little or no effect on DNA binding or lambda excision. We conclude that there are at least two functionally distinct domains in Fis: a C-terminal DNA binding region that is required for promoting both DNA recombination reactions and an N-terminal region that is uniquely required for Hin-mediated inversion.


Assuntos
Bacteriófago lambda/genética , Proteínas de Transporte/fisiologia , Proteínas de Escherichia coli , Recombinação Genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Lisogenia , Dados de Sequência Molecular , Mapeamento por Restrição , Relação Estrutura-Atividade , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA