Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 323: 116214, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115238

RESUMO

Due to anthropogenic actions, the presence of pollutants in water bodies, such as toxic metals, are increasingly negatively affecting water quality, biodiversity and sustainable goals worldwide. Therefore, decentralization of water pollution monitoring with low-cost devices, such as using smartphones, suggests an innovative green technology for in situ and real-time control. In this study, a Handheld Smartphone Spectrophotometry System (HSSS) was developed to estimate copper and iron concentration water samples. The system mainly comprises a portable commercial spectrometer (GoSpectro) that can measure the spectrum of light in the visible region. The HSSS LOD and LOQ for copper were equal to 0.589 and 1.784 mg/L, respectively, and 0.479 and 1.450 mg/L, respectively for iron. In addition, the results of copper and iron concentrations in samples with unknown concentrations using HSSS were close to the Benchtop Spectrophometer (BS). Finally, HSSS performance showed to be a new green technology for water quality management with potential applications for monitoring water resources and also providing further possibilities to measure other pollutants by the same technique, in addition to metals.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Cobre/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Ferro/análise , Metais Pesados/análise , Smartphone , Análise Espectral , Poluentes Químicos da Água/análise , Poluição da Água/análise
3.
Environ Manage ; 68(4): 491-504, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402965

RESUMO

Trophic state indexes (TSI) guide management strategies regarding eutrophication control worldwide. Such indexes usually consider chlorophyll-a (Chl-a), total phosphorus (TP), and Secchi disk depth (SDD) as independent variables for estimating aquatic productivity and the degree of impairment. TSIs for each of these components are frequently averaged to produce a single TSI value associated with a trophic state classification (e.g., oligotrophic, mesotrophic, or eutrophic). The potential divergence among equations and classification systems originally developed for temperate lakes or tropical/subtropical reservoirs might be particularly relevant in the tropics, where there is a lack of data and the use of equations originally developed for temperate systems may be inappropriate. We calculated two widely used TSIs for temperate lakes (TSItemp) or tropical reservoirs (TSItrop) and explored the deviations among TSI components in Brazilian reservoirs. When applied to our tropical/subtropical reservoirs, the TSItemp provided a conservative approach, with lower limits anticipating increasing trophic state classification. TSI components for Chl-a and SDD significantly deviated for both sets of equations, and these discrepancies were related to turbidity, water temperature, and cyanobacterial biomass. For TSItemp, but not for TSItrop, TSI values in relation to Chl-a and TP were also significantly different. All such deviations have important management implications especially when Chl-a, TP, and SDD are averaged in a single TSI, representing loss of information and less useful trophic state classifications. Our results demonstrate that tropical water bodies may respond to drivers of eutrophication differently than temperate systems, highlighting the need for more data to better inform management of these understudied ecosystems. As managers collect data from more tropical water bodies, regional models may offer even better understanding of factors influencing trophic state.


Assuntos
Ecossistema , Monitoramento Ambiental , Eutrofização , Lagos , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA